[1] Horn B K, Schunck B G. Determining optical flow[J]. Arti-ficial Intelligence, 1981, 17(1): 185-203.
[2] Sun D, Roth S, Black M J. Secrets of optical flow estima-tion and their principles[C]//Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Piscataway: IEEE, 2010: 2432-2439.
[3] Brox T, Malik J. Large displacement optical flow: descriptor matching in variational motion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 500-513.
[4] Xu W, Liu W, Huang X. Multi-modal self-paced learning for image classification[J]. Neurocomputing, 2018, 309: 134-144.
[5] Dakhia A, Wang T, Lu H. Multi-scale pyramid pooling network for salient object detection[J]. Neurocomputing, 2019, 333: 211-220.
[6] Wang F, Ainouz S, Lian C, et al. Multimodality semantic segmentation based on polarization and color images[J]. Neurocomputing, 2017, 253: 193-200.
[7] Dosovitskiy A, Fischer P, Ilg E, et al. Flownet: learning optical flow with convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 11-18, 2015. Piscataway: IEEE, 2015: 2758-2766.
[8] Vaquero V, Ros G, Moreno-Noguer F, et al. Joint coarse-and-fine reasoning for deep optical flow[C]//Proceedings of the 24th IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 2558-2562.
[9] Ren Z, Yan J, Ni B, et al. Unsupervised deep learning for optical flow estimation[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Palo Alto: AAAI, 2017: 1495-1501.
[10] Meister S, Hur J, Roth S. UnFlow: unsupervised learning of optical flow with a bidirectional census loss[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans,Feb 2-7, 2018.?Palo Alto: AAAI, 2018: 7251-7259.
[11] Zhu Y, Newsam S. Densenet for dense flow[C]//Procee-dings of the 24th IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 790-794.
[12] Wang Y, Yang Y, Yang Z, et al. Occlusion aware unsuper-vised learning of optical flow[C]//Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Reco-gnition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 4884-4893.
[13] Yu J J, Harley A W, Derpanis K G. Back to basics: unsu-pervised learning of optical flow via brightness constancy and motion smoothness[C]//LNCS 9915: Proceedings of the 14th European Conference on Computer Vision,Amsterdam, Oct 8-16, 2016. Berlin, Heidelberg: Springer, 2016: 3-10.
[14] Ranjan A, Black M J. Optical flow estimation using a spatial pyramid network[C]//Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 2720-2729.
[15] Hu P, Wang G, Tan Y. Recurrent spatial pyramid CNN for optical flow estimation[J]. IEEE Transactions on Multimedia, 2018, 20(10): 2814-2823.
[16] Dai J, Huang S, Nguyen T. Pyramid structured optical flow learning with motion cues[C]//Proceedings of the 25th IEEE International Conference on Image Processing, Athens, Oct 7-10, 2018. Piscataway: IEEE, 2018: 3338-3342.
[17] Ilg E, Mayer N, Saikia T, et al. Flownet 2.0: evolution of optical flow estimation with deep networks[C]//Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 1647-1655.
[18] Mayer N, Ilg E, Husser P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Seattle,Jun 27-30, 2016. Piscataway: IEEE, 2016: 4040-4048.
[19] Wang F, Jiang M, Qian C, et al. Residual attention network for image classification[C]//Proceedings of?the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 6450-6458.
[20] Zhang X, Wang T, Qi J, et al. Progressive attention guided recurrent network for salient object detection[C]//Proceedings of?the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscat-away: IEEE, 2018: 714-722.
[21] Zhu Y, Zhao C, Guo H, et al. Attention couplenet: fully con-volutional attention coupling network for object detection[J]. IEEE Transactions on Image Processing, 2019, 28(1): 113-126.
[22] Yang F, Yan K, Lu S, et al. Attention driven person re-iden-tification[J]. Pattern Recognition, 2019, 86: 143-155.
[23] Chen L, Yang Y, Wang J, et al. Attention to scale: scale-aware semantic image segmentation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,Seattle,Jun 27-30, 2016. Piscataway: IEEE, 2016: 3640-3649.
[24] Yuan J J, Zhang L, Chen Y H. Deep neural network based on attention convolution module for image recognition[J]. Computer Engineering and Applications, 2019, 55(8): 9-16.袁嘉杰, 张灵, 陈云华.基于注意力卷积模块的深度神经网络图像识别[J].计算机工程与应用,2019,55(8):9-16.
[25] Sun P, Hu X D, Zhang Y J. Object detection based on deep learning and attention mechanism[J]. Computer Engineering and Applications, 2019, 55(17): 180-184.孙萍, 胡旭东, 张永军.结合注意力机制的深度学习图像目标检测[J].计算机工程与应用,2019,55(17):180-184.
[26] Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[27] Yamashita T, Furukawa H, Fujiyoshi H. Multiple skip con-nections of dilated convolution network for semantic segmen-tation[C]//Proceedings of the 25th IEEE International Con-ference on Image Processing, Athens, Oct 7-10, 2018. Piscat-away: IEEE, 2018: 1593-1597.
[28] Yu F, Koltun V, Funkhouser T. Dilated residual networks[C]//Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 636-644.
[29] Shi X B, Dai H L, Zhang D Y, et al. Action prediction method for removing redundant information in optical flow[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(10): 1745-1753.石祥滨, 代海龙, 张德园, 等.去除光流中冗余信息的动作预测方法[J].计算机科学与探索,2019,13(10):1745-1753. |