[1] JIANG Z T, QIN J Q, ZHANG S Q. Parameterized pooling convolution neural network for image classification[J]. Acta Electronica Sinica, 2020, 48(9): 1729-1734.
江泽涛, 秦嘉奇, 张少钦. 参数池化卷积神经网络图像分类方法[J]. 电子学报, 2020, 48(9): 1729-1734.
[2] LIU Y, ZHAN Y W. Survey of small object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2021, 57(2): 37-48.
刘洋, 战荫伟. 基于深度学习的小目标检测算法综述[J]. 计算机工程与应用, 2021, 57(2): 37-48.
[3] TIAN Q C, MENG Y. Image semantic segmentation based on convolutional neural network[J]. Journal of Chinese Computer Systems, 2020, 41(6): 1302-1313.
田启川, 孟颖. 卷积神经网络图像语义分割技术[J]. 小型微型计算机系统, 2020, 41(6): 1302-1313.
[4] FU Z Y, ZHOU S J, LI D G. Lightweight target recognition deep neural network and its application[J]. Computer Engineering and Applications, 2020, 56(18): 131-136.
付佐毅, 周世杰, 李顶根. 轻量级目标识别深度神经网络及其应用[J]. 计算机工程与应用, 2020, 56(18): 131-136.
[5] WANG Y C, LI Z H, HAO H Y, et al. Research on visual perception technology of autonomous driving based on improved convolutional neural network[J]. Journal of Physics: Conference Series, 2020, 1550: 032103.
[6] KULIKA S, SHTANKOA A. Using convolutional neural networks for recognition of objects varied in appearance in computer vision for intellectual robots[J]. Procedia Computer Science, 2020, 169: 164-167.
[7] KU H C, DONG W. Face recognition based on MTCNN and convolutional neural network[J]. Frontiers in Signal Processing, 2020, 4(1): 37-42.
[8] HAMEED N, SHABUT A, HAMEED F, et al. Mobile-based skin lesions classification using convolution neural network[J]. Annals of Emerging Technologies in Computing, 2020, 4(2): 1-12.
[9] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[10] LECUN Y, DENKER J S, SOLLA S A. Optimal brain damage[C]//Proceedings of the Advances in Neural Information Processing Systems, Denver, Nov 27-30, 1989. San Mateo: Morgan Kaufmann, 1989: 598-605.
[11] CARREIRA-PERPI?áN M á, IDELBAYEV Y. “Learning-compression” algorithms for neural net pruning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 8532-8541.
[12] WEN W, WU C P, WANG Y D, et al. Learning structured sparsity in deep neural networks[C]//Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 2074-2082.
[13] LI H, KADAV A, DURDANOVIC I, et al. Pruning filters for efficient ConvNets[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-13.
[14] COURBARIAUX M, BENGIO Y, DAVID J P. BinaryConnect: training deep neural networks with binary weights during propagations[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 3123-3131.
[15] LI F, ZHANG B, LIU B. Ternary weight networks[C]//Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 2024-2032.
[16] XU Y H, WANG Y Z, ZHOU A J, et al. Deep neural network compression with single and multiple level quantization[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 4335-4342.
[17] LIN Z H, COURBARIAUX M, MEMISEVIC R, et al. Neural networks with few multiplications[C]//Proceedings of the 4th International Conference on Learning Representations, San Juan, May 2-4, 2016: 1-9.
[18] JADERBERG M, VEDALDI A, ZISSERMAN A. Speeding up convolutional neural networks with low rank expansions[J]. arXiv:1405.3866, 2014.
[19] LEBEDEV V, GANIN Y, RAKHUBA M, et al. Speeding-up convolutional neural networks using fine-tuned CP-decomposition[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-11.
[20] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[21] HUANG G, SUN Y, LIU Z, et al. Deep networks with stochastic depth[C]//LNCS 9908: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 646-661.
[22] KIM J, PARK Y, KIM G, et al. SplitNet: learning to semantically split deep networks for parameter reduction and model parallelization[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017. New York: ACM, 2017: 1866-1874.
[23] HINTON G E, VINYALS O, DEAN J. Distilling the know-ledge in a neural network[J]. arXiv:1503.02531, 2015.
[24] ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-13.
[25] SRINIVAS S, FLEURET F. Knowledge transfer with Jacobian matching[C]//Proceedings of the 35th International Conference on Machine Learning, Stockholm, Jul 10-15, 2018. New York: ACM, 2018: 4730-4738.
[26] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. arXiv:1406.2661, 2014.
[27] LANG L, XIA Y Q. Survey on compact neural network model design[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(9): 1456-1470.
郎磊, 夏应清. 紧凑的神经网络模型设计研究综述[J]. 计算机科学与探索, 2020, 14(9): 1456-1470.
[28] JI R R, LIN S H, CHAO F, et al. Deep neural network compression and acceleration: a review[J]. Journal of Computer Research and Development, 2018, 55(9): 1871-1888.
纪荣嵘, 林绍辉, 晁飞, 等. 深度神经网络压缩与加速综述[J]. 计算机研究与发展, 2018, 55(9): 1871-1888.
[29] LIN J D, WU X Y, CHAI Y, et al. Structure optimization of convolutional neural networks: a survey[J]. Acta Automatica Sinica, 2020, 46(1): 24-37.
林景栋, 吴欣怡, 柴毅, 等. 卷积神经网络结构优化综述[J]. 自动化学报, 2020, 46(1): 24-37.
[30] GENG L L, NIU B N. Survey of deep neural networks model compression[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(9): 1441-1455.
耿丽丽, 牛保宁. 深度神经网络模型压缩综述[J]. 计算机科学与探索, 2020, 14(9): 1441-1455.
[31] GAO H, TIAN Y L, XU F Y, et al. Survey of deep learning model compression and acceleration[J]. Journal of Software, 2021, 32(1): 68-92.
高晗, 田育龙, 许封元, 等. 深度学习模型压缩与加速综述[J]. 软件学报, 2021, 32(1): 68-92.
[32] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-14.
[33] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[34] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1097-1105.
[35] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//LNCS 8689: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 5-12, 2014. Cham: Springer, 2014: 818-833.
[36] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[37] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269.
[38] CHEN Y P, LI J N, XIAO H X, et al. Dual path networks[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Los Angeles, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 4467-4475.
[39] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 1-13.
[40] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7341-7349.
[41] SANDLER M, HOWARD A G, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 4510-4520.
[42] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[J]. arXiv:1602.07360, 2016.
[43] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 6848-6856.
[44] LI Q Q, JIN S Y, YAN J J. Mimicking very efficient network for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7341-7349.
[45] WANG T, YUAN L, ZHANG X P, et al. Distilling object detectors with fine-grained feature imitation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4933-4942.
[46] ZHANG T T, DONG J Y, ZHAO H R, et al. Lightweight phytoplankton detection network based on knowledge distillation[J]. Journal of Applied Sciences, 2020, 38(3): 367-376.
张彤彤, 董军宇, 赵浩然, 等. 基于知识蒸馏的轻量型浮游植物检测网络[J]. 应用科学学报, 2020, 38(3): 367-376.
[47] HOU Y N, MA Z, LIU C X, et al. Inter-region affinity distillation for road marking segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 12483-12492.
[48] SHAO H K, ZHONG D X, DU X F. Towards efficient unconstrained palmprint recognition via deep distillation Hashing[J]. arXiv:2004.03303, 2020.
[49] BHARDWAJ S, SRINIVASAN M, KHAPRA M M. Efficient video classification using fewer frames[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 354-363.
[50] WU H Y, LIU J, XIE Y, et al. Knowledge transfer dehazing network for nonhomogeneous dehazing[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 1975-1983.
[51] YANG C L, XIE L X, QIAO S Y, et al. Training deep neural networks in generations: a more tolerant teacher educates better students[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence, Hawaii, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5628-5635.
[52] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2818-2826.
[53] PEREYRA G, TUCKER G, CHOROWSKI J, et al. Regularizing neural networks by penalizing confident output distributions[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-12.
[54] CHO J H, HARIHARAN B. On the efficacy of knowledge distillation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 4793-4801.
[55] ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-13.
[56] LEE S H, KIM D H, SONG B C. Self-supervised know-ledge distillation using singular value decomposition[C]//LNCS 11210: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 339-354.
[57] YIM J, JOO D, BAE J H, et al. A gift from knowledge distillation: fast optimization, network minimization and transfer learning[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7130-7138.
[58] HUANG Z H, WANG N Y. Like what you like: knowledge distill via neuron selectivity transfer[J]. arXiv:1707.01219, 2017.
[59] AHN S, HU S X, DAMIANOU A C, et al. Variational information distillation for knowledge transfer[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 9163-9171.
[60] KIM J, PARK S, KWAK N. Paraphrasing complex network: network compression via factor transfer[J]. arXiv:1802.04977, 2018.
[61] TIAN Y L, KRISHNAN D, ISOLA P. Contrastive representation distillation[C]//Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020: 1-15.
[62] ZHANG Z, NING G H, HE Z H. Knowledge projection for deep neural networks[J]. arXiv:1710.09505, 2017.
[63] PARK W, KIM D, LU Y, et al. Relational knowledge distillation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3967-3976.
[64] STOCK P, JOULIN A, GRIBONVAL R, et al. And the bit goes down: revisiting the quantization of neural networks[C]//Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020: 1-11.
[65] LIU Y F, CAO J J, LI B, et al. Knowledge distillation via instance relationship graph[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7096-7104.
[66] GRIPON V, ORTEGA A, GIRAULT B. An inside look at deep neural networks using graph signal processing[C]//Proceedings of the 2018 Information Theory and Applications Workshop, San Diego, Feb 11-16, 2018. Piscataway: IEEE, 2018: 1-9.
[67] ANIRUDH R, THIAGARAJAN J J, SRIDHAR R, et al. MARGIN: uncovering deep neural networks using graph signal analysis[J]. arXiv:1711.05407, 2017.
[68] LASSANCE C, GRIPON V, ORTEGA A. Laplacian networks: bounding indicator function smoothness for neural network robustness[J]. APSIPA Transactions on Signal and Information Processing, 2021, 10: 1-12.
[69] LASSANCE C, BONTONOU M, HACENE G B, et al. Deep geometric knowledge distillation with graphs[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 8484-8488.
[70] FENG Y S, WANG H, HU R, et al. Triplet distillation for deep face recognition[C]//Proceedings of the 2020 IEEE International Conference on Image Processing, Abu Dhabi, Oct 25-28, 2020. Piscataway: IEEE, 2020: 808-812.
[71] HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[J]. arXiv:1703.07737, 2017.
[72] TUNG F, MORI G. Similarity-preserving knowledge distillation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1365-1374.
[73] PENG B Y, JIN X, LI D S, et al. Correlation congruence for knowledge distillation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 5006-5015.
[74] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1449-1457.
[75] LEE S, SONG B C. Graph-based knowledge distillation by multi-head attention network[J]. arXiv:1907.02226, 2019.
[76] YADAV A K, SHAH S, XU Z, et al. Stabilizing adversarial nets with prediction methods[J]. arXiv:1705.07364, 2017.
[77] WANG X J, ZHANG R, SUN Y, et al. KDGAN: knowledge distillation with generative adversarial networks[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2018, Montreal, Dec 3-8, 2018. Red Hook: Curran Associates, 2018: 783-794.
[78] GAO D, ZHUO C. Private knowledge transfer via model distillation with generative adversarial networks[J]. arXiv: 2004.04631, 2020.
[79] XU Z, HSU Y C, HUANG J W. Training shallow and thin networks for acceleration via knowledge distillation with conditional adversarial networks[J]. arXiv:1709.00513, 2017. |