[1] GE H. Research on image classification method based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
葛昊. 基于深度学习的图像分类方法研究[D]. 成都: 电子科技大学, 2020.
[2] LUO J H, WU J X. A survey on fine-grained image categoriza-tion using deep convolutional features[J]. Acta Automatica Sinica, 2017, 43(8): 1306-1318.
罗建豪, 吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述[J]. 自动化学报, 2017, 43(8): 1306-1318.
[3] LU X Q, JI W J, LI X L, et al. Bidirectional adaptive feature fusion for remote sensing scene classification[J]. Neurocom-puting, 2019, 328: 135-146.
[4] LU X Q, LI X L, MOU L C. Semi-supervised multitask learning for scene recognition[J]. IEEE Transactions on Cybernetics, 2017, 45(9): 1967-1976.
[5] YUAN Y, ZHENG X T, LU X Q. A discriminative represen-tation for human action recognition[J]. Pattern Recognition, 2016, 59: 88-97.
[6] YUAN Y, QI L, LU X Q. Action recognition by joint learning[J]. Image and Vision Computing, 2015, 55: 77-85.
[7] LU X Q, WANG B Q, ZHENG X T, et al. Exploring models and data for remote sensing image caption generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2183-2195.
[8] VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: lessons learned from the 2015 MSCOCO image captioning challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 652-663.
[9] PENATTI O A B, SILVA F B, VALLE E, et al. Visual word spatial arrangement for image retrieval and classification[J]. Pattern Recognition, 2014, 47(2): 705-720.
[10] LU X Q, CHEN Y X, LI X L. Hierarchical recurrent neural Hashing for image retrieval with hierarchical convolutional features[J]. IEEE Transactions on Image Processing, 2018, 27(1): 106-120.
[11] WAH C, BRANSON S, WELINDER P, et al. The Caltech-UCSD Birds-200-2011 dataset[R]. Pasadena: California Ins-titute of Technology, 2011.
[12] KRAUSE J, STARK M, JIA D, et al. 3D object representa-tions for fine-grained categorization[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops, Sydney, Dec 2-8, 2013. Piscataway: IEEE, 2013: 554-561.
[13] MAJI S, RAHTU E, KANNALA J, et al. Fine-grained visual classification of aircraft[J]. arXiv:1306.5151, 2013.
[14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 26th Annual Conference on Neural Infor-mation Processing Systems, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1106-1114.
[15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[16] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with con-volutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[17] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceed-ings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2818-2826.
[18] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 4278-4284.
[19] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learn-ing for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[20] ZHANG N, DONAHUE J, GIRSHICK R B, et al. Part-based R-CNNs for fine-grained category detection[C]//LNCS 8689: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 834-849.
[21] BRANSON S, VAN HORN G, BELONGIE S, et al. Bird species categorization using pose normalized deep convolu-tional nets[J]. arXiv:1406.2952, 2014.
[22] ZHANG H, XU T, ELHOSEINY M, et al. SPDA-CNN: unifying semantic part detection and abstraction for fine-grained recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer So-ciety, 2016: 1143-1152.
[23] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
[24] WEI X S, XIE C W, WU J X. Mask-CNN: localizing parts and selecting descriptors for fine-grained image recognition[J]. arXiv:1605.06878, 2016.
[25] HUANG S L, XU Z, TAO D C, et al. Part-stacked CNN for fine-grained visual categorization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 1173-1182.
[26] XIAO T J, XU Y C, YANG K Y, et al. The application of two-level attention models in deep convolutional neural network for fine-grained image classification[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Re-cognition, Boston, Jun 7-12, 2015. Washington: IEEE Com-puter Society, 2015: 842-850.
[27] FU J L, ZHENG H L, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4476-4484.
[28] HE X T, PENG Y X. Weakly supervised learning of part selec-tion model with spatial constraints for fine-grained image classification[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 4075-4081.
[29] SIMONELLI A, DE NATALE F G B, MESSELODI S, et al. Increasingly specialized ensemble of convolutional neural networks for fine-grained recognition[C]//Proceedings of the 2018 IEEE International Conference on Image Processing, Athens, Oct 7-10, 2018. Piscataway: IEEE, 2018: 594-598.
[30] SUN M, YUAN Y, ZHOU F, et al. Multi-attention multi-class constraint for fine-grained image recognition[J]. arXiv: 1806.05372, 2018.
[31] YANG Z, LUO T, WANG D, et al. Learning to navigate for fine-grained classification[J]. arXiv:1809.00287, 2018.
[32] ZHENG H L, FU J L, MEI T, et al. Learning multi-attention convolutional neural network for fine-grained image recog-nition[C]//Proceedings of the 2017 IEEE International Con-ference on Computer Vision, Venice, Oct 22-29, 2017. Wash-ington: IEEE Computer Society, 2017: 5219-5227.
[33] HUANG C, LI H L, XIE Y R, et al. PBC: polygon-based classifier for fine-grained categorization[J]. IEEE Transac-tions on Multimedia, 2017, 19(4): 673-684.
[34] SHI W W, GONG Y H, TAO X Y, et al. Fine-grained image classification using modified DCNNs trained by cascaded Softmax and generalized large-margin losses[J]. IEEE Tran-sactions on Neural Networks and Learning Systems, 2019, 30(3): 683-694.
[35] HE X T, PENG Y X. Fine-grained image classification via combining vision and language[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recogni-tion, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7332-7340.
[36] CUI Y, SONG Y, SUN C, et al. Large scale fine-grained ca-tegorization and domain-specific transfer learning[C]//Pro-ceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 4109-4118.
[37] ZHU Y X, LI R C, YANG Y, et al. Learning cascade atten-tion for fine-grained image classification[J]. Neural Networks, 2019, 122: 174-182.
[38] YAN Y C, NI B B, WEI H W, et al. Fine-grained image anal-ysis via progressive feature learning[J]. Neurocomputing, 2020, 396: 254-265.
[39] YAN T T, WANG S J, WANG Z H, et al. Progressive learn-ing for weakly supervised fine-grained classification[J]. Signal Processing, 2020, 171: 107519.
[40] LIN D, SHEN X Y, LU C W, et al. Deep LAC: deep locali-zation, alignment and classification for fine-grained recogni-tion[C]//Proceedings of the 2015 IEEE Conference on Com-puter Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1666-1674.
[41] ZHANG X P, XIONG H K, ZHOU W G, et al. Picking deep filter responses for fine-grained image recognition[C]//Pro-ceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Wash-ington: IEEE Computer Society, 2016: 1134-1142.
[42] XU Z, HUANG S L, ZHANG Y, et al. Augmenting strong supervision using Web data for fine-grained categorization[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 2524-2532.
[43] YU S Y, WU Y, LI W, et al. A model for fine-grained vehicle classification based on deep learning[J]. Neurocomputing, 2017, 257: 97-103.
[44] HOCHREITER S, SCHMIDHUBER J. Long short-term me-mory[J]. Neural Computing, 1997, 9(8): 1735-1780.
[45] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pat-tern Recognition, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1449-1457.
[46] GAO Y, BEIJBOM O, ZHANG N, et al. Compact bilinear pooling[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 317-326.
[47] GE S Y, GAO Z L, ZHANG B B, et al. Kernelized bilinear CNN models for fine-grained visual recognition[J]. Acta Electronica Sinica, 2019, 47(10): 2134-2141.
葛疏雨, 高子淋, 张冰冰, 等. 基于核化双线性卷积网络的细粒度图像分类[J]. 电子学报, 2019, 47(10): 2134-2141.
[48] KRAUSE J, JIN H L, YANG J C, et al. Fine-grained recogni-tion without part annotations[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recogni-tion, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 5546-5555.
[49] QI L, LU X Q, LI X L. Exploiting spatial relation for fine-grained image classification[J]. Pattern Recognition, 2019, 91: 47-55.
[50] BLOCH I. Fuzzy spatial relationships for image processing and interpretation: a review[J]. Image & Vision Computing, 2005, 23(2): 89-110.
[51] WON C S. Multi-scale CNN for fine-grained image recogni-tion[J].?IEEE Access, 2020, 8: 116663-116674.
[52] XIE E Z, LI G Y, LIU W Y. Improving fine-grained object classification using adversarial generated unlabelled samples [C]//Proceedings of the IEEE 4th International Conference on Multimedia Big Data, Xi??an, Sep 13-16, 2018. Piscata-way: IEEE, 2018: 1-5.
[53] REDMON J, FARHADI A. YOLO9000: better, faster, stronger [J]. arXiv.1612.08242, 2016.
[54] SHE H L, JIE S J, ZHOU J J. 3D-CNN with standard score dimensionality reduction for hyperspectral remote sensing images classification[J]. Computer Engineering and Appli-cations, 2021, 57(4): 169-175.
佘海龙, 解山娟, 邹静洁.?标准分数降维的3D-CNN高光谱遥感图像分类[J].?计算机工程与应用,?2021,?57(4):?169-175.
[55] XU K W, XU B, WU Y, et al. Overview of application of machine learning in ultrasound images[J]. Computer Eng-ineering and Applications, 2021,?57(4):?11-17.
徐可文, 许波, 吴英, 等.?机器学习在超声图像中的应用综述[J].?计算机工程与应用,?2021,?57(4):?11-17.
[56] HU T, QI H, HUANG Q, et al. See better before looking closer: weakly supervised data augmentation network for fine-grained visual classification[J]. arXiv:1901.09891, 2019.
[57] TAN R, YE W J, LIU Y J. Fine-grained image classification based on dual semantic data augmentation and target loca-tion[J/OL]. Computer Engineering (2021-02-08) [2021-09-22]. https://doi.org/10.19678/j.issn.1000-3428.0060111.
谭润, 叶武剑, 刘怡俊. 双语义数据增强及目标定位的细粒度图像分类[J/OL]. 计算机工程(2021-02-08) [2021-09-22]. https://doi.org/10.19678/j.issn.1000-3428.0060111.
[58] DING W Q, YU P F, LI H Y, et al. Weakly supervised fine-grained image classification based on Xception network[J/OL]. Computer Engineering and Applications (2020-12-25) [2021-03-02]. https://kns.cnki.net/kcms/detail/11.2127.TP. 20201225.0921.008.html.
丁文谦, 余鹏飞, 李海燕, 等. 基于Xception网络的弱监督细粒度图像分类[J/OL]. 计算机工程与应用(2020-12-25) [2021-03-02]. https://kns.cnki.net/kcms/detail/11.2127.TP. 20201225.0921.008.html.
[59] LI H, ZHANG X P, TIAN Q, et al. Attribute mix: semantic data augmentation for fine grained recognition[C]//Proceed-ings of the 2020 IEEE International Conference on Visual Communications and Image Processing, Macau, China, Dec 1-4, 2020. Piscataway: IEEE, 2020: 243-246.
[60] YAN C, PANG G S, BAI X, et al. Beyond triplet loss: person re-identification with fine-grained difference-aware pairwise loss[J]. IEEE Transactions on Multimedia, 2021. DOI: 10. 1109/TMM.2021.3069562.
[61] LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re-identification[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pat-tern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 152-159.
[62] ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1116-1124.
[63] ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples gen-erated by GAN improve the person re-identification base-line in vitro[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017.Washington: IEEE Computer Society, 2017: 3774-3782.
[64] HAN C C, ZHENG R C, GAO C X, et al. Complementation-reinforced attention network for person re-identification[J]. IEEE Transactions on Circuits and Systems, 2020, 30(10): 3433-3445.
[65] XIE P Y, XU X. Multi-scale joint learning for person re-identification[J]. Journal of Beijing University of Aeronau-tics and Astronautics, 2021, 47(3): 613-622.
谢彭宇, 徐新. 基于多尺度联合学习的行人重识别[J]. 北京航空航天大学学报, 2021, 47(3): 613-622.
[66] HAN T T. Fine-grained representations and applications of human action in video understanding[D]. Harbin: Harbin Institute of Technology, 2019.
韩婷婷. 视频理解中人体动作的细粒度表示与应用[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[67] LI K K, LIU L B. Fine-grained image classification model based on bilinear aggregate residual attention[J/OL]. Journal of Frontiers of Computer Science and Technology (2021-02-04) [2021-03-02]. https://kns.cnki.net/kcms/detail/11.5602.TP.20210204.1424.006.html.
李宽宽, 刘立波. 双线性聚合残差注意力的细粒度图像分类模型[J/OL]. 计算机科学与探索(2021-02-04) [2021-03-02]. https://kns.cnki.net/kcms/detail/11.5602.TP.20210204. 1424.006.html.
[68] XIANG Y, FU Y, HUANG H. Global topology constraint network for fine-grained vehicle recognition[J]. IEEE Tran-sactions on Intelligent Transportation Systems, 2020, 21(7): 2918-2929.
[69] FANG J, ZHOU Y, YU Y, et al. Fine-grained vehicle model recognition using a coarse-to-fine convolutional neural net-work architecture[J]. IEEE Transactions on Intelligent Tran-sportation System, 2017, 18(7): 1782-1792.
[70] LI X X, YU L Y, CHANG D L, et al. Dual cross-entropy loss for small-sample fine-grained vehicle classification[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4204-4212.
[71] HUANG Y, LIANG B R, XIE W P, et al. Dual domain multi-task model for vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation System, 2020. DOI: 10.1109/ TITS.2020.3027578. |