[1] WU X, KUMAR V, QUINLAN J, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems, 2008, 14(1): 1-37.
[2] JAIN A K. Data clustering: 50 years beyond K-means[J]. Pat-tern Recognition Letters, 2010, 31(8): 651-666.
[3] XU D, TIAN Y. A comprehensive survey of clustering algo-rithms[J]. Annals of Data Science, 2015, 2(2): 165-193.
[4] FOWLKES E B C, MALLOWS L. A method for comparing two hierarchical clusterings[J]. Journal of the American Stati-stical Association, 1983, 78(383): 553-569.
[5] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Ber-keley Symposium on Mathematical Statistics and Probability, Berkeley, 1967. Berkeley: University of California Press,1967: 281-297.
[6] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Confer-ence on Knowledge Discovery and Data Mining, Portland, 1996. Menlo Park: AAAI, 1996: 226-231.
[7] BEEFERMAN D, BERGER A. Agglomerative clustering of a search engine query log[C]//Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, 2000. New York: ACM, 2000: 407-416.
[8] SHEPITSEN A, GEMMELL J, MOBASHER B, et al. Perso-nalized recommendation in social tagging systems using hierarchical clustering[C]//Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Oct 23-25, 2008. New York: ACM, 2008: 259-266.
[9] SHI J B, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
[10] AGGARWAL C C, REDDY C K. Data clustering algorithms and applications[M]. Boca Raton: CRC Press, 2013.
[11] DHILLON I S. Co-clustering documents and words using bipartite spectral graph partitioning[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 26-29, 2001. New York: ACM, 2001: 269-274.
[12] FOWLKES C, BELONGIE S, CHUNG F, et al. Spectral grouping using the Nystrom method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225.
[13] NIE F P, WANG X Q, DENG C, et al. Learning a structured optimal bipartite graph for co-clustering learning a structured optimal bipartite graph for co-clustering[C]//Proceedings of the 30th International Conference on Neural Information Pro-cessing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 4132-4141.
[14] SHINNOU H, SASAKI M. Spectral clustering for a large data set by reducing the similarity matrix size[C]//Proceedings of the 2008 International Conference on Language Resources and Evaluation, Marrakech, May 26-Jun 1, 2008. European Language Resources Association, 2008: 1-4.
[15] YAN D, HUANG L, JORDAN M I. Fast approximate spectral clustering[C]//Proceedings of the 15th ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining, Paris, Jun 28-Jul 1, 2009. New York: ACM, 2009: 907-916.
[16] CAI D, CHEN X. Large scale spectral clustering via landmark-based sparse representation[J]. IEEE Transactions on Cyber-netics, 2015, 45(8): 1669-1680.
[17] LIU J, WANG C, DANILEVSKY M, et al. Large-scale spectral clustering on graphs[C]//Proceedings of the 23rd Inter-national Joint Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Menlo Park: AAAI, 2013: 1486-1492.
[18] HUANG D, WANG C D, WU J S, et al. Ultra-scalable spec-tral clustering and ensemble clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1212-1226.
[19] LEE J, LEE I, KANG J. Attention graph pooling[J]. arXiv:1904.08082, 2019.
[20] Wolfram Research, Inc. Detailed introduction of the bipartite graph[EB/OL]. [2019-11-02]. https://mathworld.wolfram.com/BipartiteGraph.html.
[21] MCDAID A F, GREENE D, HURLEY N. Normalized mutual information to evaluate overlapping community finding algo-rithms[J]. arXiv:1110.2515, 2011.
[22] STEINLEY D. Properties of the Hubert-arable adjusted rand index[J]. Psychological Methods, 2004, 9(3): 386-396.
[23] YANG M, CHEN X, NIE F, et al. Scalable normalized cut with improve spectral rotation[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 1518-1524.
[24] HE L, RAY N, GUAN Y, et al. Fast large-scale spectral clus-tering via explicit feature mapping[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 1058-1071.
[25] WU J S, ZHENG W S, LAI J H, et al. Euler clustering on large-scale dataset[J]. IEEE Transactions on Big Data, 2018, 4(4): 502-515. |