[1] WU Z P, TANG N, CHEN Y L, et al. AUV path planning based on improved artificial potential field method[J]. Control and Instruments in Chemical Industry, 2014, 41(2): 1421-1423.
[2] DAVOODI M, PANAHI M, MOHADES A, et al. Multi-objective path planning in discrete space[J]. Applied Soft Computing Journal, 2013, 13(1): 709-720.
[3] HUANG J, CHEN H W, UNIVERSITY S T. Research on global path planning algorithm of mobile robot[J]. Instrument Technique & Sensor, 2014(12): 80-83.
[4] ZHANG Y, LI S, GUO H. A type of biased consensus-based distributed neural network for path planning[J]. Nonlinear Dynamics, 2017, 89(3): 1-13.
[5] DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman pro-blem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
[6] GEETHA S, CHITRA G M, JAYALAKSHMI V. Multi objective mobile robot path planning based on hybrid algorithm[C]//Proceedings of the 2011 3rd International Conference on Electronics Computer Technology, Kanyakumari, Apr 8-10, 2011. Piscataway: IEEE, 2011: 251-255.
[7] LIU X Y, TAN L M, YANG C X, et al. Self-adjustable dynamic path planning of unknown environment based on ant colony-clustering algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(5): 846-857.
刘新宇, 谭力铭, 杨春曦, 等. 未知环境下的蚁群-聚类自适应动态路径规划[J]. 计算机科学与探索, 2019, 13(5): 846-857.
[8] ZHU Y, YOU X M, LIU S, et al. Research for robot path planning problem based on improved ant colony system (ACS) algorithm[J]. Computer Engineering and Applications, 2018, 54(19): 129-134.
朱艳, 游晓明, 刘升, 等. 基于改进蚁群算法的机器人路径规划问题研究[J]. 计算机工程与应用, 2018, 54(19): 129-134.
[9] SILVA J L, NEDJAH N, MACEDO M L, et al. ACO-based static routing for network-on-chips[C]//LNCS 7333: Procee-dings of the 12th International Conference on Computational Science and Its Applications, Salvador de Bahia, Jun 18-21, 2012. Berlin, Heidelberg: Springer, 2012: 113-124.
[10] LIU J H, YANG J G, LIU H P, et al. An improved ant colony algorithm for robot path planning[J]. Soft Computing, 2017, 21(19): 5829-5839.
[11] YOU X M, LIU S, LV J Q. Ant colony algorithm based on dynamic search strategy and its application on path planning of robot[J]. Control and Decision, 2017, 32(3): 552-556.
游晓明, 刘升, 吕金秋. 一种动态搜索策略的蚁群算法及其在机器人路径规划中的应用[J]. 控制与决策, 2017, 32(3): 552-556.
[12] SUN W, LV Y F, TANG H W, et al. Mobile robot path plan-ning based on an improved A* algorithm[J]. Journal of Hunan University (Natural Sciences), 2017, 44(4): 94-101.
孙炜, 吕云峰, 唐宏伟, 等. 基于一种改进A*算法的移动机器人路径规划[J]. 湖南大学学报(自然科学版), 2017, 44(4): 94-101.
[13] QU H, HUANG L W, KE X. Research on robot path planning based on improved ant colony algorithm in dynamic environ-ment[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(2): 260-265.
屈鸿, 黄利伟, 柯星. 动态环境下基于改进蚁群算法的机器人路径规划研究[J]. 电子科技大学学报, 2015, 44(2): 260-265.
[14] DONG S W, HUA F Y. Path planning of mobile robot in dynamic environments[C]//Proceedings of the 2011 2nd Inter-national Conference on Intelligent Control and Information Processing, Harbin, Jul 25-28, 2011. Piscataway: IEEE, 2011: 691-696.
[15] MAHI M, BAYKAN ? K, KODAZ H. A new hybrid method based on particle swarm optimization, ant colony optimization and 3-opt algorithms for traveling salesman problem[J]. Applied Soft Computing, 2015, 30: 484-490.
[16] ZHANG Y Y. Mobile robot path planning based on improved multi-step ant colony algorithm[D]. Wuhan: Wuhan University of Science and Technology, 2018.
张原艺. 基于改进多步长蚁群算法的移动机器人路径规划[D]. 武汉: 武汉科技大学, 2018.
[17] XU Y, CUI Y Y. Path planning based on Q-IGA dynamic fitting Bessel curve[J]. Journal of Hunan University (Natural Sciences), 2020, 47(10): 68-75.
徐岩, 崔媛媛. 基于Q-IGA动态拟合贝塞尔曲线的路径规划[J]. 湖南大学学报(自然科学版), 2020, 47(10): 68-75. |