[1] HAO S, LI G L, FENG J H, et al. Survey of structured data cleaning methods[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(12): 1037-1050.
郝爽, 李国良, 冯建华, 等. 结构化数据清洗技术综述[J]. 清华大学学报(自然科学版), 2018, 58(12): 1037-1050.
[2] GUPTA M, GAO J, AGGARWAL C A, et al. Outlier detec-tion for temporal data: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(9): 2250-2267.
[3] CHALAMALLA A, ILYAS I F, OUZZANI M, et al. Descri-ptive and prescriptive data cleaning[C]//Proceedings of the 2014 International Conference on Management of Data, Snow-bird, Jun 22-27, 2014. New York: ACM, 2014: 445-456.
[4] KUMAR V. Parallel and distributed computing for cyber-security[J]. IEEE Distributed Systems Online, 2005, 6(10): 1.
[5] GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): 215-220.
[6] DE STEFANO C, SANSONE C, VENTO M. To reject or not to reject: that is the question-an answer in case of neural classifiers[J]. IEEE Transactions on Systems, Management and Cybernetics, 2000, 30(1): 84-94.
[7] SCH?OLKOPF B, PLATT J C, SHAWE-TAYLOR J C, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471.
[8] ROTH V. Kernel Fisher discriminants for outlier detection[J]. Neural Computation, 2006, 18(4): 942-960.
[9] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Con-ference on Knowledge Discovery and Data Mining, Portland, 1996. Menlo Park: AAAI, 1996: 226-231.
[10] SMITH R, BIVENS A, EMBRECHTS M, et al. Clustering approaches for anomaly based intrusion detection[C]//Pro-ceedings of the Intelligent Engineering Systems through Ar-tificial Neural Networks, St Louis, 2002. New York: ASME Press, 2002: 579-584.
[11] WANG X, WANG C. Time series data cleaning: a survey[J]. IEEE Access, 2020, 8: 1866-1881.
[12] HARTIGAN J A, WONG M A. A k-means clustering algo-rithm[J]. Applied Statistics, 1979, 28: 100-108.
[13] FUJIMAKI R, NAKATA T, TSUKAHARA H, et al. Mining abnormal patterns from heterogeneous time-series with irre-levant features for fault event detection[J]. Statistical Anal-ysis and Data Mining, 2009, 2(1): 1-17.
[14] QIAO Y, XIN X, BIN Y, et al. Anomaly intrusion detection method based on HMM[J]. Electronics Letters, 2002, 38:663-664.
[15] SONG S X, ZHANG A Q, WANG J M. SCREEN: stream data cleaning under speed constraints[C]//Proceedings of the 2015 ACM SIGMOD International Conference on Man-agement of Data, Melbourne, May 31-Jun 4, 2015. New York: ACM, 2015: 827-841.
[16] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly de-tection: a survey[J]. ACM Computing Surveys, 2009, 41(3): 1-58.
[17] DING X O, YU S J, WANG M X, et al. Anomaly detection on industrial time series based on correlation analysis[J]. Journal of Software, 2020, 31(3): 726-747.
丁小欧, 于晟健, 王沐贤, 等. 基于相关性分析的工业时序数据异常检测[J]. 软件学报, 2020, 31(3): 726-747.
[18] CHAUDHURI P. A self-stabilizing algorithm for detecting fundamental cycles in a graph[J]. Journal of Computer and System Sciences, 1999, 59(1): 84-93. |