[1] TAY Y, LUU A T, HUI S C. Multi-pointer co-attention net-works for recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 2309-2318.
[2] KOREN Y, BELL R M, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. IEEE Computer, 2009, 42(8): 30-37.
[3] KOREN Y. Factorization meets the neighborhood: a multi-faceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Aug 24-27, 2008. New York: ACM, 2008: 426-434.
[4] LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C]//Proceedings of the Advances in Neural Infor-mation Processing Systems, Denver, Dec 1, 2000. Red Hook: Curran Associates, 2000: 556-562.
[5] MNIH A, SALAKHUTDINOV R R. Probabilistic matrix factorization[C]//Proceedings of the 21st Annual Conference on Neural Information Processing Systems, Vancouver, Dec 3-6, 2007. Red Hook: Curran Associates, 2008: 1257-1264.
[6] HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.
黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.
[7] ZHENG L, NOROOZI V, YU P S. Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, Feb 6-10, 2017. New York: ACM, 2017: 425-434.
[8] CHEN C, ZHANG M, LIU Y Q, et al. Neural attentional rating regression with review-level explanations[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1583-1592.
[9] SEO S, HUANG J, YANG H, et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction[C]//Proceedings of the 11th ACM Conference on Recommender Systems, Como, Aug 27-31, 2017. New York: ACM, 2017: 297-305.
[10] WANG Q Q, LI S, CHEN G. Word-driven and context-aware review modeling for recommendation[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 1859-1862.
[11] BAO Y, FANG H, ZHANG J. TopicMF: simultaneously ex-ploiting ratings and reviews for recommendation[C]//Pro-ceedings of the 28th AAAI Conference on Artificial Intellig-ence, Québec, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 2-8.
[12] LI P J, WANG Z H, REN Z C, et al. Neural rating regression with abstractive tips generation for recommendation[C]//Proceedings of the 40th International ACM SIGIR Confer-ence on Research and Development in Information Retrieval, Shinjuku, Aug 7-11, 2017. New York: ACM, 2017: 345-354.
[13] RICCI F, ROKACH L, SHAPIRA B. Introduction to recom-mender systems handbook[M]//Recommender Systems Hand-book. Berlin, Heidelberg: Springer, 2011.
[14] SU X Y, KHOSHGOFTAAR T M. A survey of collaborative filtering techniques[J]. Advances in Artificial Intelligence, 2009: 421425.
[15] LI T, ZHANG R F, GUO K H. Incremental collaborative filtering recommendation method for personalized websites[J]. Computer Engineering and Applications, 2019, 55(4): 225-232.
李婷, 张瑞芳, 郭克华. 面向个性化网站的增量协同过滤推荐方法[J]. 计算机工程与应用, 2019, 55(4): 225-232.
[16] WU Y, DUBOIS C, ZHENG A X, et al. Collaborative denoi-sing auto-encoders for top-n recommender systems[C]//Pro-ceedings of the 9th ACM International Conference on Web Search and Data Mining, San Francisco, Feb 22-25, 2016. New York: ACM, 2016: 153-162.
[17] LI S, KAWALE J, FU Y. Deep collaborative filtering via marginalized denoising auto-encoder[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 19-23, 2015. New York: ACM, 2015: 811-820.
[18] MCAULEY J J, LESKOVEC J. Hidden factors and hidden topics: understanding rating dimensions with review text[C]//Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, Oct 12-16, 2013. New York: ACM, 2013: 165-172.
[19] CATHERINE R, COHEN W W. TransNets: learning to transform for recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems, Como, Aug 27-31, 2017. New York: ACM, 2017: 288-296.
[20] ZHANG W, YUAN Q, HAN J W, et al. Collaborative multi-level embedding learning from reviews for rating prediction[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 2986-2992.
[21] SEO S, HUANG J, YANG H, et al. Representation learning of users and items for review rating prediction using attention-based convolutional neural network[C]//Proceedings of the SDM Workshop on Machine Learning Methods for Recom-mender Systems, Houston, Apr 27-29, 2017. Philadelphia: SIAM, 2017: 1-8.
[22] TAN Y Z, ZHANG M, LIU Y Q, et al. Rating-boosted latent topics: understanding users and items with ratings and reviews[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 2640-2646.
[23] ZHANG Z P, SHEN X Y. Research on user behavior recom-mendation method based on deep learning[J]. Computer Engineering and Applications, 2019, 55(4): 142-147.
张祖平, 沈晓阳. 基于深度学习的用户行为推荐方法研究[J]. 计算机工程与应用, 2019, 55(4): 142-147.
[24] XING C Z, ZHAO H B, ZHANG Q G, et al. Reviews text hierarchical attention and outer product for recommenda-tion method[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 947-957.
邢长征, 赵宏宝, 张全贵, 等. 融合评论文本层级注意力和外积的推荐方法[J]. 计算机科学与探索, 2020, 14(6): 947-957.
[25] DING Y, LI X. Time weight collaborative filtering[C]//Proceedings of the 2005 ACM CIKM International Confer-ence on Information and Knowledge Management, Bremen, Oct 31-Nov 5, 2005. New York: ACM, 2005: 485-492.
[26] KOREN Y. Collaborative filtering with temporal dynamics[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, Jun 28-Jul 1, 2009. New York: ACM, 2009: 447-456.
[27] WANG S Q, LI X X, SUN F Z, et al. Survey of research on personalized news recommendation techniques[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 18-29.
王少卿, 李鑫鑫, 孙福振, 等. 个性化新闻推荐技术研究综述[J]. 计算机科学与探索, 2020, 14(1): 18-29.
[28] ZHANG X W, HE K Q, WANG J, et al. Web service recommendation based on watchlist via temporal and tag preference fusion[C]//Proceedings of the 2014 IEEE Inter-national Conference on Web Services, Anchorage, Jun 27-Jul 2, 2014. Washington: IEEE Computer Society, 2014: 281-288.
[29] HE X N, DU X Y, WANG X, et al. Outer product-based neural collaborative filtering[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018. Menlo Park: AAAI, 2018: 2227-2233.
[30] KIM D H, PARK C, OH J, et al. Convolutional matrix factorization for document context-aware recommendation[C]//Proceedings of the 10th ACM Conference on Recom-mender Systems, Boston, Sep 15-19, 2016. New York: ACM, 2016: 233-240. |