[1] FANG L P, HE H J, ZHOU G M. Research overview of ob-ject detection
methods[J]. Computer Engineering and Appli-cations, 2018, 54(13): 11-18.
方路平,
何杭江, 周国民. 目标检测算法研究综述[J]. 计算机工程与应用, 2018, 54(13): 11-18.
[2] CHEN H J, WANG Q
Q, YANG G W, et al. SSD object det-ection algorithm with multi-scale convolution
feature fusion[J]. Journal of Frontiers of Computer Science and Technology,
2019, 13(6): 1049-1061.
陈幻杰, 王琦琦, 杨国威, 等. 多尺度卷积特征融合的SSD目标检测算法[J]. 计算机科学与探索,
2019, 13(6): 1049-1061.
[3] HUANG J, RATHOD V, SUN C, et al. Speed/accuracy
trade-offs for modern convolutional object detectors[C]//Proceed-ings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul
21-26, 2017. Washington:IEEE Computer Society, 2017: 3296-3297.
[4] BELL S,
ZITNICK C L, BALA K, et al. Inside-outside net: detecting objects in context
with skip pooling and recurrent neural networks[C]//Proceedings of the 2016 IEEE
Confer-ence on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30,
2016. Washington: IEEE Computer Society, 2016: 2874-2883.
[5] PIETIK?INEN M.
Texture analysis with local binary patterns[C]//LNCS 3540: Proceedings of the
Scandinavian Confer-ence on Image Analysis, Norrk?ping, Jun 11-13, 2005. Berlin,
Heidelberg: Springer, 2005: 115-118.
[6] DAI J F, LI Y, HE K M, et al. R-FCN:
object detection via region-based fully convolutional networks[C]//Proceedings
of the Annual Conference on Neural Information Processing Systems 2016,
Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 379-387.
[7]
REDMON J, FARHADI A. YOLO9000: better, faster, stron-ger[C]//Proceedings of the
2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Honolulu, Jul
21-26, 2017. Washington: IEEE Computer Society, 2017: 6517-6525.
[8] MITA T,
KANEKO T, HORI O. Joint Haar-like features for face detection[C]//Proceedings of
the 10th IEEE Interna-tional Conference on Computer Vision, Beijing, Oct 17-20,
2005. Washington: IEEE Computer Society, 2005: 1619-1626.
[9] DALAL N, TRIGGS
B. Histograms of oriented gradients for human detection[C]//Proceedings of the
2005 IEEE Com-puter Society Conference on Computer Vision and Pattern
Recognition, San Diego, Jun 20-26, 2005. Washington: IEEE Computer Society,
2005: 886-893.
[10] GIRSHICK R B, DONAHUE J, DARRELL T, et al. Region-based
convolutional networks for accurate object detection and segmentation[J]. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1):
142-158.
[11] GIRSHICK R B. Fast R-CNN[C]//Proceedings of the 2015 IEEE
International Conference on Computer Vision, San-tiago, Dec 7-13, 2015.
Washington: IEEE Computer Society, 2015: 1440-1448.
[12] REN S Q, HE K M,
GIRSHICK R B, et al. Faster R-CNN:towards real-time object detection with region
proposal net-works[C]//Proceedings of the 29th Annual Conference on Neural
Information Processing Systems, Montreal, Dec 7-12, 2015. Red Hook: Curran
Associates, 2015: 91-99.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single
shot MultiBox detector[C]//LNCS 9905: Proceedings of the 14th European
Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016:
21-37.
[14] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot
detector[J]. arXiv:1701.06659, 2017.
[15] JEONG J, PARK H, KWAK N.
Enhancement of SSD by concatenating feature maps for object detection[J]. arXiv:
1705.09587, 2017.
[16] LI Z X, ZHOU F Q. FSSD: feature fusion single shot
multi-box detector[J]. arXiv:1712.00960, 2017.
[17] SZEGEDY C, IOFFE S,
VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual
connections on learning[C]//Proceedings of the 31st AAAI Conference on
Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017:
4278-4284.
[18] TSUNG-YI L, PRIYA G, ROSS G, et al. Focal loss for dense
object detection[J]. arXiv:1708.02002, 2017.
[19] ZEILER M D, FERGUS R.
Visualizing and understanding convolutional networks[C]//LNCS 8689: Proceedings
of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014.
Cham: Springer, 2014: 818-833.
[20] KONG T, SUN F C, HUA W B, et al. Deep
feature pyramid reconfiguration for object detection[C]//LNCS 11209:
Pro-ceedings of the 15th European Conference on Computer Vi-sion, Munich, Sep
8-14, 2018. Cham: Springer, 2018: 172-188.
[21] HU J, SHEN L, SUN G.
Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018.
Washington: IEEE Computer Society, 2018: 7132-7141.
[22] GATES L A, ECKER A
S, BETHGE M. Image style transfer using convolutional neural
networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and
Pattern Rec-ognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer
Society, 2016: 2414-2423.
[23] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et
al. The PASCAL visual object classes (VOC) challenge[J]. International Journal
of Computer Vision, 2010, 88(2): 303-338.
[24] ZHANG Y L, YUAN Y, FENG Y C,
et al. Hierarchical and robust convolutional neural network for very
high-resolution remote sensing object detection[J]. IEEE Transactions on
Geoscience and Remote Sensing, 2019, 57(8): 5535-5548.
[25] LU X, LIU K,
CHENG Y X. Non-motor vehicle target de-tection based on deep learning[J].
Computer Engineering and Applications, 2019, 55(8): 182-188.
路雪, 刘坤, 程永翔.
一种深度学习的非机动车辆目标检测算法[J]. 计算机工程与应用, 2019, 55(8): 182-188.
|