[1] HAN J. Data mining: concepts and techniques[M]. San Fran-cisco: Morgan Kaufmann Publishers Inc, 2005.
[2] PENG C K, HAVLIN S, STANLEY H E, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series[J]. Chaos, 1995, 5(1): 83-88.
[3] FU T C. A review on time series data mining[J]. Engineering Applications of Artificial Intelligence, 2011, 24(1): 164-181.
[4] RATANAMAHATANA C, KEOGH E, BAGNALL T, et al. A novel bit level time series representation with implications for similarity search and clustering[C]//Proceedings of the 9th Pacific-Asia Conference on Advances in Knowledge Dis-covery and Data Mining. Berlin, Heidelberg: Springer, 2005: 771-777.
[5] KEOGH E J,LIN J,FU A W C. Hot SAX: efficiently finding the most unusual time series subsequence[C]//Proceedings of the 5th IEEE International Conference on Data Mining, Houston, Nov 27-30, 2005. Washington: IEEE Computer Society, 2005: 226-233.
[6] AGRAWAL R, FALOUTSOS C, SWAMI A N. Efficient simi-larity search in sequence database[C]//LNCS 730: Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, Chicago, Oct 13-15, 1993. Berlin, Heidelberg: Springer, 1993: 69-84.
[7] KEOGH E J, CHAKRABARTI K, PAZZANI M J, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems, 2001, 3(3): 263-286.
[8] KEOGH E J, PAZZANI M J. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback[C]//Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, Aug 27-31, 1998. Menlo Park: AAAI, 1998: 239-243.
[9] CHAN K P, FU W C. Efficient timeseries matching by wave-lets[C]//Proceedings of the 15th International Conference on Data Engineering, Sydney, Mar 23-26, 1999. Piscataway: IEEE, 1999: 126-133.
[10] POPIVANOV I, MILLER R J. Similarity search overtime-series data using wavelets[C]//Proceedings of the 18th Inter-national Conference on Data Engineering, San Jose, Feb 26- Mar 1, 2002. Piscataway: IEEE, 2002: 212-221.
[11] CHUNG F L, FU T C, LUK R. Flexible time series pattern matching based on perceptually important points[C]//Pro-ceedings of the Workshop on Learning from Temporal and Spatial Data in International Joint Conference on Artificial Intelligence, Seattle, Aug 4-10, 2001: 1-7.
[12] JI H J, ZHOU C H, LIU Z F. An approximate representation method of time series symbols based on the beginning and end distance[J]. Computer Science, 2008, 45(6): 216-221.
季海娟, 周从华, 刘志锋. 一种基于始末距离的时间序列符号聚合近似表示方法[J]. 计算机科学, 2018, 45(6): 216-221.
[13] LIN J, KEOGH E J, WEI L, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data Mining Knowledge Discovery, 2007, 15(2): 107-144.
[14] LKHAGVA B, SUZUKI Y, KAWAGOE K. Extended SAX: extension of symbolic aggregate approximation for financial time series data representation[C]//Proceedings of the Data Engineering Workshop, 2006: 1-6.
[15] SHIEH J, KEOGH E. iSAX: disk-aware mining and indexing of massive time series datasets[J]. Data Mining and Knowledge Discovery, 2009, 19(1): 24-57.
[16] KORN F, JAGACIISH H V, FALOUTSOS C. Efficiently supporting ad hoc queries in large datasets of time sequences[C]//Proceedings of the ACM SIGMOD International Con-ference on Management of Data, Tucson, May 13-15, 1997. New York: ACM, 1997: 289-300.
[17] YE L X, KEOGH E. Time series shapelets: a new primitive for data mining[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, Jun 28-Jul 1, 2009. New York: ACM, 2009: 947-956.
[18] YE L X, KEOGH E. Time series shapelets: a novel technique that allows accurate, interpretable and fast classification[J]. Data Mining and Knowledge Discovery, 2011, 22(1/2): 149-182.
[19] SUN Y, LI J, LIU J, et al. An improvement of symbolic aggregate approximation distance measure for timeseries[J]. Neurocomputing, 2014, 138(11): 189-198.
[20] AZZOUZI M, NABNEY I T. Analysing time series structure with hidden Markov models[C]//Proceedings of the 1998 IEEE Signal Processing Society Workshop, Cambridge, Sep 2, 1998. Piscataway: IEEE, 1998: 402-408.
[21] KALPAKIS K, GADA D, PUTTAGUNTA V. Distance mea-sures for effective clustering of ARIMA time-series[C]//Pro-ceedings of the 2001 IEEE International Conference on Data Mining, San Jose, Nov 29-Dec 2, 2001. Washington: IEEE Computer Society, 2001: 273-280.
[22] NANOPOULOS A, ALCOCK R, MANOLOPOULOS Y. Feature-based classification of time-series data[J]. International Journal of Computer Research, 2001, 10: 49-61.
[23] LI A G, QIN Z. Dimensionality reduction and similarity search for large-scale time series data[J]. Chinese Journal of Com-puters, 2005, 28 (9): 1467-1475.
李爱国, 覃征. 大规模时间序列数据降维及相似搜索[J]. 计算机学报, 2005, 28( 9): 1467-1475.
[24] FUCHS E, GRUBER T, NITSCHKE J, et al. Online seg-mentation of time series based on polynomial least-squares approximations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2232-2245.
[25] FUCHS E, GRUBER T, NITSCHKE J, et al. Temporal data mining using shape space representation of time series[J]. Neurocomputing, 2010, 74: 379-393.
[26] FUCHS E, GRUBER T, NITSCHKE J, et al. On-line motif detection in time series with SwiftMotif[J]. Patterns Recog-nition, 2009, 42(11): 3742-3750.
[27] SEBASTIANI P, RAMONI M, COHEN P R, et al. Discovering dynamics using Bayesian clustering[C]//LNCS 1642: Procee-dings of the 3rd International Symposium Advances in Inte-lligent Data Analysis, Amsterdam, Aug 9-11, 1999. Berlin, Heidelberg: Springer, 1999:199-209.
[28] HAR-PELED S, RAICHEL B. Net and prune: a linear time algorithm for Euclidean distance problems[C]//Proceedings of the Symposium on Theory of Computing Conference, Palo Alto, Jun 1-4, 2013. New York: ACM, 2014: 605-614.
[29] BAI S H, QI H D, XIU N H. Constrained best Euclidean distance embedding on a sphere: a matrix optimization approach[J]. SIAM Journal on Optimization, 2015, 25(1): 439-467.
[30] CHU S, KEOGH E J, HART D M, et al. Iterative deepening dynamic time warping for time series[C]//Proceedings of the 2nd SIAM International Conference on Data Mining, Arli-ngton, Apr 11-13, 2002. Philadelphia: SIAM, 2002: 195-212.
[31] FALOUTSOS C, RANGANATHAN M, MANOLOPOULOS Y. Fast subsequence matching in time-series databases[C]//Proceedings of the 1994 ACM SIGMOD International Con-ference on Management of Data, Minneapolis, May 24-27, 1994. New York: ACM, 1994: 419-429.
[32] YI B K, FALOUTSOS C. Fast time sequence indexing for arbitrary Lp norms[C]//Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Sep 10-14, 2000. San Mateo: Morgan Kaufmann, 2000: 385-394.
[33] SAKOE H, CHIBA S. A dynamic programming approach to continuous speech recognition[C]//Proceedings of the 7th Inter-national Congress on Acoustics, Budapest, 1971: 65-69.
[34] JOHN A, CHURCH G M. Aligning gene expression time series with time warping, algorithms[J]. Bioinformatics, 2001, 17(6): 495-508.
[35] MAO H B, WU H S, LI Z X, et al. Research on similarity measurement methods for multivariate time series[J]. Control and Decision, 2011, 26(4): 565-570.
毛红保, 吴虎胜, 李正欣, 等. 多元时间序列相似性度量方法研究[J]. 控制与决策, 2011, 26(4): 565-570.
[36] SAKOE H, CHIBA S. Dynamic programming algorithm opti-mization for spoken word recognition[M]//Waibel A, Lee K F. Readings in Speech Recognition. San Francisco: Morgan Kaufmann Publishers Inc, 1990.
[37] ITAKURA F. Minimum prediction residual principle applied to speech recognition[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1975, 23(1): 67-72.
[38] KEOGH E, RATANAMAHATANA C A. Exact indexing of dynamic time warping[J]. Knowledge and Information Systems, 2005, 7(3): 358-386.
[39] GORECKI T, LUCZAK M. Using derivatives in time series classification[J]. Data Mining and Knowledge Discovery, 2013, 26(26): 310-331.
[40] KEOGH E J, PAZZANI M J. Derivative dynamic time war-ping[C]//Proceedings of the 1st SIAM International Con-ference on Data Mining, Chicago, Apr 5-7, 2001. Philadelphia: SIAM, 2001: 1-11.
[41] MENG X J, WAN Y. Multivariate time series similarity mea-sure for dynamic time warping of adaptive cost[J]. Statistics and Decision, 2020, 36(2): 25-29.
孟晓静, 万源. 自适应代价动态时间弯曲的多元时间序列相似性度量[J]. 统计与决策, 2020, 36(2): 25-29.
[42] GOLAY X, KOLLIAS S, STOLL G, et al. A new corre-lation-based fuzzy logic clustering algorithm for FMRI[J]. Magnetic Resonance in Medicine, 1998, 40(2): 249-260.
[43] VLACHOS M, GUNOPULOS G, KOLLIOS G. Discover-ing similar multidimensional trajectories[C]//Proceedings of the 18th International Conference on Data Engineering, San Jose, Feb 26-Mar 1, 2002. Washington: IEEE Computer Society, 2002: 673-684.
[44] BANERJEE A, GHOSH J. Clickstream clustering using wei-ghted longest common subsequences[C]//Proceedings of the Workshop on Web Mining, SIAM Conference on Data Mining, Chicago. Philadelphia: SIAM, 2001: 33-40.
[45] WANG H Z, SU H, ZHENG K, et al. An effectiveness study on trajectory similarity measures[C]//Proceedings of the 24th Australasian Database Conference, Adelaide, 2013. Darlinghurst: Australia Computer Society, 2013: 13-22.
[46] BERGROTH L, HAKONEN H, RAITA T. A survey of longest common subsequence algorithms[C]//Proceedings of the 7th International Symposium on String Processing Information Retrieval, A Coru?a, Sep 27-29, 2000. Washington: IEEE Computer Society, 2000: 39-48.
[47] CHAIRUNNANDA P, GOPALKRISHNAN V, CHEN L. Enhancing edit distance on real sequences filters using his-togram distance on fixed reference ordering[C]//Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, Aug 20-24, 2006. Washington: IEEE Computer Society, 2006: 582-585.
[48] CHEN L, ?ZSU M T, ORIA V. Robust and fast similarity search for moving object trajectories[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data, Baltimore, Jun 14-16, 2005. New York: ACM, 2005: 491-502.
[49] CHEN L, NG R T. On the marriage of Lp-norms and edit distance[C]//Proceedings of the 30th International Conference on Very Large Data Bases, Toronto, Aug 31-Sep 3, 2004. San Mateo: Morgan Kaufmann, 2004: 792-803.
[50] KURBALIJA V, RADOVANOVI M, GELER Z, et al. The influence of global constraints on similarity measures for time-series databases[J]. Knowledge-Based Systems, 2014, 56(3): 49-67.
[51] CONTI J C, FARIAL F A, ALMEIDA J, et al. Evaluation of time series distance functions in the task of detecting remote phenology patterns[C]//Proceedings of the 22nd Inter-national Conference on Pattern Recognition, Stockholm, Aug 24-28, 2014. Washington: IEEE Computer Society, 2014: 3126-3131.
[52] JIA D B, ZHANG D Y, LI N M. Pulse waveform classi-fication using support vector machine with Gaussian time warp edit distance kernel[J]. Computational and Mathematical Methods in Medicine, 2014: 1-10.
[53] SMYTH P, HECKERMAN D, JORDAN M I. Probabilistic independence networks for hidden Markov probability models[J]. Neural Computation, 1997, 9(2): 227-269.
[54] GE X P, SMYTH P. Deformable Markov model for time-series pattern matching[C]//Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, Aug 20-23, 2000. New York: ACM, 2000: 81-90.
[55] PANUCCIO A, BICEGO M, MURINO V. A hidden Markov model-based approach to sequential data clustering[C]//LNCS 2396: Proceedings of the Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition, Beijing, Aug 17-19, 2002. Berlin, Heidelberg: Springer, 2002: 734-742.
[56] SHENG H, ZHANG Y X. Network traffic modeling and forecasting based on ARIMA[J]. Communications Technology, 2019, 52(4): 903-907.
盛虎, 张玉雪. 基于ARIMA的网络流量建模及预测研究[J]. 通信技术, 2019, 52(4): 903-907.
[57] CHEN Y G, NASCIMENTO M A, OOI B C, et al. SpADe: on shape-based pattern detection in streaming time series[C]//Proceedings of the 23rd International Conference on Data Engineering, Istanbul, Apr 15-20, 2007. Washington: IEEE Computer Society, 2007: 786-795.
[58] RODGERS L J, NICEWANDER W A. Thirteen ways to look at the correlation coefficient[J]. American Statistician, 1988, 42(1): 59-66.
[59] INDYK P, KOUDAS N, MUTHUKRISHNAN S. Identifying representative trends in massive time series data sets using sketches[C]//Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Sep 10-14, 2000. San Mateo: Morgan Kaufmann, 2000: 363-372.
[60] BAHJA F, MARTINO J, ELHAJ E I, et al. A corroborative study on improving pitch determination by time-frequency cepstrum decomposition using wavelets[J]. SpringerPlus, 2016, 5(1): 564.
[61] LI X H, ZHAN Y Z, KE J. Lens similarity measurement based on probability distance and fusion of spatiotemporal features[J]. Application Research of Computers, 2010, 27(4): 1526-1529.
李贤慧, 詹永照, 柯佳. 基于概率距离及融合时空特征的镜头相似性度量[J]. 计算机应用研究, 2010, 27(4): 1526-1529.
[62] KEOGH E J, LONARDI S, RATANAMAHATANA C A, et al. Compression-based data mining of sequential data[J]. Data Mining and Knowledge Discovery, 2007, 14(1): 99-129.
[63] AGHABOZORGI S R, SHIRKHORSHIDI A S, TEH Y W. Time-series clustering—a decade review[J]. Information Systems, 2015, 53(C): 16-38.
[64] LANG W, MORSE M D, PATEL J M. Dictionary-based compression for long time-series similarity[J]. IEEE Transa-ctions on Knowledge and Data Engineering, 2010, 22(11): 1609-1622.
[65] DAHLHAUS R. On the Kullback-Leibler information diver-gence of locally stationary processes[J]. Stochastic Processes and Their Applications, 1996, 62(1): 139-168.
[66] KEOGH E J, SMYTH P. A probabilistic approach to fast pattern matching in time series databases[C]//Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, Newport Beach, Aug 14-17, 1997. Menlo Park: AAAI, 1997: 24-30.
[67] HUHTALA Y, K?RKK?INEN J, TOIVONEN H. Mining for similarities in aligned time series using wavelets[C]//Proceedings of the Data Mining and Knowledge Discovery: Theory, Tools, and Technology I, Orlando, Apr 5, 1999. San Francisco: SPIE, 1999: 150-160.
[68] WANG C Z, WANG X Y. Supporting content-based searches on time series via approximation[C]//Proceedings of the 12th International Conference on Scientific and Statistical Data-base Management, Berlin, Jul 26-28, 2000. Washington: IEEE Computer Society, 2000: 69-81. |