[1] RAJA P, PUGAZHENTHI S. Optimal path planning of mobile robots: a review[J]. International Journal of Physical Sciences, 2012, 7(9): 1314-1320.
[2] MASEHIAN E. Review and taxonomies of assembly and disassembly path planning problems and approaches[J]. Com-puter-Aided Design, 2015, 67: 58-59.
[3] ALEJO D, COBANO J A, HEREDIA G, et al. Efficient trajectory planning for WSN data collection with multiple UAVs[M]//KOUB?A A, MARTíNEZ-DE DIOS J. Studies in Computational Intelligence. Berlin, Heidelberg: Springer, 2015.
[4] XIA K F, LI P F, CHEN X P. Pedestrian tracking for mobile robots based on improved particle filtering[J]. Journal of Fron-tiers of Computer Science and Technology, 2017, 11(11): 1849-1859.
夏克付, 李鹏飞, 陈小平. 基于改进粒子滤波的移动机器人行人跟踪[J]. 计算机科学与探索, 2017, 11(11): 1849-1859.
[5] GONZáLEZ D, PéREZ J, MILANéS V, et al. A review of motion planning techniques for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4): 1135-1145.
[6] CHEN Y, LUO G, MEI Y, et al. UAV path planning using artificial potential field method updated by optimal control theory[J]. International Journal of Systems Science, 2016, 47(6): 1407-1420.
[7] REN Y, ZHAO H B. Improved robot path planning based on artificial potential field method[J]. Computer Simulation, 2020, 37(2): 360-364.
任彦, 赵海波. 改进人工势场法的机器人避障及路径规划[J]. 计算机仿真, 2020, 37(2): 360-364.
[8] PAN H, GUO C, WANG Z D. Research for path planning based on improved astart algorithm[C]//Proceedings of the 4th International Conference on Information, Cybernetics and Computational Social Systems, Dalian, Jul 24-26, 2017. Piscataway: IEEE, 2017: 225-230.
[9] ZHANG K, LIU P P, KONG W R, et al. An improved heu-ristic algorithm for UCAV path planning[C]//Proceedings of the 11th International Conference on Bio-Inspired Com-puting Theories and Applications, Xi’an, Oct 28-30, 2016. Berlin, Heidelberg: Springer, 2016: 54-59.
[10] DUAN H B, HUANG L Z. Imperialist competitive algorithm optimized artificial neural networks for UCAV global path planning[J]. Neurocomputing, 2014, 125: 166-171.
[11] MAC T T, COPOT C, TRAN D T, et al. Heuristic approaches in robot path planning: a survey[J]. Robotics and Autonomous Systems, 2016, 86: 13-28.
[12] WANG X, SHI Y, DING D, et al. Double global optimum genetic algorithm particle swarm optimization-based welding robot path planning[J]. Engineering Optimization, 2016, 48(2): 299-316.
[13] LIU X Y, TAN L M, YANG C X, et al. Self-adjustable dynamic path planning of unknown environment based on ant colony-clustering algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(5): 846-857.
刘新宇, 谭力铭, 杨春曦, 等. 未知环境下的蚁群-聚类自适应动态路径规划[J]. 计算机科学与探索, 2019, 13(5): 846-857.
[14] ELBANHAWI M, SIMIC M. Sampling-based robot motion planning: a review[J]. IEEE Access, 2014, 2(1): 56-77.
[15] BRANICKY M S, CURTISS M M, LEVINE J, et al. Sampling-based planning, control and verification of hybrid systems[J]. IEE Proceedings-Control Theory and Applications, 2005, 38(1): 271-276.
[16] GE S S, CUI Y J. New potential functions for mobile robot path planning[J]. IEEE Transactions on Robotics and Auto-mation, 2000, 16(5): 615-620.
[17] KAVRAKI L E, ?VESTKA P, LATOMBE J C, et al. Pro-babilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1994, 12(4): 566-580.
[18] LAVALLE S M. Rapidly-exploring random trees: a new tool for path planning: TR 98-11[R]. Ames: Iowa State University, 1998.
[19] KUFFNER J J, LAVALLE S M. RRT-connect: an efficient approach to single-query path planning[C]//Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, Apr 24-28, 2000. Piscataway: IEEE, 2002: 995-1001.
[20] ADIYATOV O, VAROL H A. Rapidly-exploring random tree based memory efficient motion planning[C]//Proceedings of the 2013 International Conference on Mechatronics and Automation, Takamatsu, Aug 4-7, 2013. Piscataway: IEEE, 2013: 354-359.
[21] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7): 846-894.
[22] CHOUDHURY S, GAMMELL J D, BARFOOT T D, et al. Regionally accelerated batch informed trees (RABIT*): a framework to integrate local information into optimal path planning[C]//Proceedings of the 2016 International Confer-ence on Robotics and Automation, Stockholm, May 16-21, 2016. Piscataway: IEEE, 2016: 4207-4214.
[23] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Infor-med RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//Proceedings of the 2014 International Conference on Intel-ligent Robots and Systems, Chicago, Sep 14-18, 2014. Pis-cataway: IEEE, 2014: 2997-3004.
[24] YANG Y, FU K C, JIANG T, et al. AGV path planned with heuristic RRT[J]. Computer Engineering and Applications, 2020, 56(12): 125-133.
杨瑶, 付克昌, 蒋涛, 等. 启发式RRT算法的AGV路径规划[J]. 计算机工程与应用, 2020, 56(12): 125-133.
[25] LIU Z Y, ZHANG J. Path planning using improved RRT algorithm for indoor mobile robot[J]. Computer Engineering and Applications, 2020, 56(9): 190-197.
刘紫燕, 张杰. 改进RRT算法的室内移动机器人路径规划[J]. 计算机工程与应用, 2020, 56(9): 190-197.
[26] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[M]//COX I J, WILFONG G T. Autono-mous Robot Vehicles. Berlin, Heidelberg: Springer, 1986: 396-404. |