[1] LECUN Y, BOTTOU L, BENGIO Y. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278 - 2324.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2): 1106-1114.
[3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations, Canada, May 7-9, 2015.
[4] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Bosto, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[5] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[6] HUANG G, LIU Z, WEINBERGER K Q. Densely connected convolutional networks[J]. arXiv:1608.06993, 2016.
[7] ZHENG X, CAI D, HE X F, et al. Locality preserving clustering for image database[C]//Proceedings of the 12th ACM International Conference on Multimedia, New York, Oct 10-16, 2004. New York: ACM, 2004: 885-891.
[8] FERREIRA D S, RAMALHO G L B, DE MEDEIROS F N S, et al. Saliency-driven system with deep learning for cell image classification[C]//Proceedings of the 16th IEEE International Symposium on Biomedical Imaging, Venice, Apr 8-11, 2019. Piscataway: IEEE, 2019: 1284-1287.
[9] THEERA-UMPON N, DHOMPONGSA S. Morphological granulometric features of nucleus in automatic bone marrow white blood cell classification[J]. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(3): 353-359.
[10] WANG R H, MCCANE B. Red blood cell classification through depth map and surface feature[C]//Proceedings of the 2008 International Symposium on Computer Science and Computational Technology, Shanghai, Dec 20-22, 2008. Washington: IEEE Computer Society, 2008: 339-342.
[11] GAO Z, ZHANG J, ZHOU L, et al. HEp-2 cell image classification with deep convolutional neural networks[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(2): 416-428.
[12] NAVON D. Forest before trees: the precedence of global features in visual perception[J]. Cognitive Psychology, 1977, 9(3): 353-383.
[13] YANG G, HUANG T S. Human face detection in a complex background[J]. Pattern Recognition, 1994, 27(1): 53-63.
[14] TIAN X, GUO R, WU Q B, et al. Leucorrhea-wet-film recognition based on coarse-to-fine CNN-SVM[C]//Proceedings of the 2017 International Conference on Security, Pattern Analysis, and Cybernetics, Shenzhen, Dec 15-17, 2017. Piscataway: IEEE, 2017: 548-551.
[15] FU R, LI B, GAO Y, et al. CNN with coarse-to-fine layer for hierarchical classification[J]. IET Computer Vision, 2018, 12(6): 892-899.
[16] XIAO X, YUNNENG Y. Combination of multi-scale convolutional networks and SVM for SAR ATR[C]//Proceedings of the 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, Xi??an, May 25-27, 2018. Piscataway: IEEE, 2018: 66-69.
[17] TONTI S, CATALDO S D, Bottino A, et al. An automated approach to the segmentation of HEp-2 cells for the indirect immunofluorescence ANA test[J]. Computerized Medical Imaging and Graphics, 2015, 40: 62-69.
[18] LI Y X, SHEN L L. A deep residual inception network for HEp-2 cell classification[C]//LNCS 10553: Proceedings of the 2017 Deep Lepdfarning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Québec City, Sep 14, 2017. Berlin, Heidelberg: Springer, 2017: 12-20.
[19] HU C J, ZHOU R F, ZHANG S L, et al. Interpretation of the international consensus on standardized indirect immunofluorescence nomenclature of antinuclear antibody HEp-2 cell patterns and reporting ANA results[J]. Chinese Journal of Laboratory Medicine, 2016, 39(11): 804-810.
胡朝军, 周仁芳, 张蜀澜, 等. 抗核抗体HEp-2细胞间接免疫荧光模型及其结果报告方式国际共识解读[J]. 中华检验医学杂志, 2016, 39(11): 804-810.
[20] XU X, LIN F, NG C, et al. Automated classification for HEp-2 cells based on linear local distance coding framework[J]. EURASIP Journal Image and Video Processing, 2015(1): 13.
[21] WILIEM A, SANDERSON C, WONG Y, et al. Automatic classification of human epithelial type 2 cell indirect immunofluorescence images using cell pyramid matching[J]. Pattern Recognition, 2014, 47(7): 2315-2324.
[22] THEODORAKOPOULOS I, KASTANIOTIS D, ECONOMOU G, et al. HEp-2 cells classification via sparse representation of textural features fused into dissimilarity space[J]. Pattern Recognition, 2014, 47(7): 2367-2378.
[23] NOSAKA R, FUKUI K. HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns[J]. Pattern Recognition, 2014, 47(7): 2428-2436.
[24] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[25] HAN X H, WANG J, XU G, et al. High-order statistics of microtexton for HEp-2 staining pattern classification[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(8): 2223-2234.
[26] GUILLAUME T, JESúS A, FERNAND M. Advanced statistical matrices for texture characterization: application to cell classification[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(3): 630-637.
[27] LIU J X, XU B L, SHEN L L, et al. HEp-2 cell classification based on a deep autoencoding-classification convolutional neural network[C]//Proceedings of the 14th IEEE International Symposium on Biomedical Imaging, Melbourne, Apr 18-21, 2017. Piscataway: IEEE, 2017: 1019-1023.
[28] SHEN L, JIA X, LI Y. Deep cross residual network for HEp-2 cell staining pattern classification[J]. Pattern Recognition, 2018, 82: 68-78.
[29] XIE H, HE Y J, LEI H J, et al. Deeply supervised residual network for HEp-2 cell classification[C]//Proceedings of the 24th International Conference on Pattern Recognition, Beijing, Aug 20-24, 2018. Washington: IEEE Computer Society, 2018: 699-703.
[30] YANG Y, XU D, NIE F, et al. Image clustering using local discriminant models and global integration[J]. IEEE Transactions on Image Processing, 2010, 19(10): 2761-2773.
[31] HE X F, CAI D, LIU H F, et al. Image clustering with tensor representation[C]//Proceedings of the 13th ACM International Conference on Multimedia, Singapore, Nov 6-11, 2005. New York: ACM, 2005: 132-140.
[32] TARIQ A, FOROOSH H. T-clustering: image clustering by tensor decomposition[C]//Proceedings of the 2015 IEEE International Conference on Image Processing, Quebec City, Sept 27-30, 2015. Piscataway: IEEE, 2015: 4803-4807.
[33] XIE J Y, HOU Q, CAO J W. Image clustering algorithms by deep convolutional autoencoders[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 586-595.
谢娟英, 侯琦, 曹嘉文. 深度卷积自编码图像聚类算法[J]. 计算机科学与探索, 2019, 13(4): 586-595.
[34] WAN J, WU F, HE Y B, et al. Clustering algorithm for high-dimensional data under new dimensionality reduction criteria[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 96-107.
万静, 吴凡, 何云斌, 等. 新的降维标准下的高维数据聚类算法[J]. 计算机科学与探索, 2020, 14(1): 96-107.
[35] HONG M, JIA C Y, WANG X Y. Research on initialization of K-means type multi-view clustering[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 574-585.
洪敏, 贾彩燕, 王晓阳. K-means型多视图聚类中的初始化问题研究[J]. 计算机科学与探索, 2019, 13(4): 574-585.
[36] SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks[C]//Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, Jul 31-Aug 5, 2011. Piscataway: IEEE, 2011: 2809-2813.
[37] HOBSON P, LOVELL B C, Percannella G, et al. Classifying anti-nuclear antibodies HEp-2 images: a benchmarking platform[C]//Proceedings of the 22nd International Conference on Pattern Recognition, Stockholm, Aug 24-28, 2014. Washington: IEEE Computer Society, 2014: 3233-3238.
[38] WIIK A S, H?IER-MADSEN M, FORSLID J, et al. Antinuclear antibodies: a contemporary nomenclature using HEp-2 cells[J]. Journal of Autoimmunity, 2010, 35(3): 276-290.
[39] HOBSON P, LOVELL B C, PERCANNELLA G, et al. HEp-2 staining pattern recognition at cell and specimen levels: datasets, algorithms and results[J]. Pattern Recognition Letters, 2016, 82: 12-22.
[40] QI X, ZHAO G, CHEN J, et al. Exploring illumination robust descriptors for human epithelial type 2 cell classification[J]. Pattern Recognition, 2016, 60: 420-429. |