计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (7): 1649-1660.DOI: 10.3778/j.issn.1673-9418.2109081
收稿日期:
2021-08-17
修回日期:
2021-10-21
出版日期:
2022-07-01
发布日期:
2021-11-03
作者简介:
彭豪(1995—),男,山西运城人,硕士研究生,主要研究方向为深度学习。 基金资助:
Received:
2021-08-17
Revised:
2021-10-21
Online:
2022-07-01
Published:
2021-11-03
Supported by:
摘要:
目标检测是把图像中指定的目标检测出来,这一技术已经广泛运用于自动驾驶、人脸识别等领域,已成为国内外计算机视觉领域的一大研究热点。传统的目标检测往往需要大量标注的数据集,如何在只有少量带注释样本的情况下进行目标检测是一个挑战。针对此问题,提出了一种多尺度选择金字塔网络的小样本目标检测算法,使检测不再依赖于大规模标签数据集。首先,设计了一个用于小样本目标检测的多尺度选择金字塔网络,它由三个组件组成:上下文层注意力模块、特征尺度增强模块、特征尺度选择模块。然后,在RPN网络产生的RoI特征后采用最大池化和平均池化来提升特征之间的相关性,之后进行特征融合,并且采用特征减法来突出特征中的类别信息,在保持模型对样本参数稳定性的前提下提高了对新类参数的敏感度;最后,采用正交映射损失函数使模型在分类层前就约束特征,即使在少量样本情况下也能够很好地衡量特征间的相似性。
中图分类号:
彭豪, 李晓明. 多尺度选择金字塔网络的小样本目标检测算法[J]. 计算机科学与探索, 2022, 16(7): 1649-1660.
PENG Hao, LI Xiaoming. Multi-scale Selection Pyramid Networks for Small-Sample Target Detection Algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1649-1660.
Methods | Novel-class split 1 | Novel-class split 2 | Novel-class split 3 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | | |
FSRW[ | 14.5 | 15.3 | 26.9 | 32.4 | 46.8 | 15.7 | 16.8 | 21.4 | 31.8 | 39.3 | 21.1 | 25.9 | 28.4 | 40.6 | 45.7 |
MetaDet[ | 18.8 | 19.4 | 28.6 | 35.2 | 49.0 | 20.6 | 23.5 | 27.5 | 31.7 | 42.5 | 20.5 | 23.4 | 29.7 | 42.1 | 44.5 |
FSOD-KT[ | 27.6 | 40.8 | 46.5 | 55.3 | 56.2 | 19.2 | 26.5 | 37.0 | 38.8 | 41.4 | 29.5 | 30.8 | 38.5 | 42.7 | 45.6 |
TFA w/fc[ | 36.8 | 35.85 | 41.6 | 55.8 | 56.9 | 18.3 | 27.1 | 31.5 | 35.4 | 38.2 | 27.8 | 33.4 | 40.5 | 48.4 | 50.9 |
TFA w/cos[ | 39.7 | 36.9 | 44.3 | 54.2 | 56.5 | 23.4 | 26.4 | 32.8 | 34.9 | 38.0 | 30.4 | 35.1 | 41.7 | 49.5 | 48.4 |
FSDetView[ | 24.5 | 35.5 | 42.9 | 48.5 | 54.3 | 21.5 | 27.6 | 31.8 | 37.5 | 44.9 | 21.4 | 30.2 | 35.8 | 37.7 | 49.5 |
MPSR[ | 41.6 | — | 51.0 | 55.6 | 61.7 | 24.3 | — | 39.4 | 39.7 | 47.2 | 35.4 | — | 42.1 | 48.1 | 49.5 |
AFD-Net[ | 33.2 | 39.5 | 51.6 | 55.2 | 60.6 | 24.8 | 29.7 | 40.5 | 44.2 | 48.1 | 27.3 | 35.1 | 43.5 | 47.6 | 51.2 |
CME[ | 41.4 | 45.8 | 50.2 | 54.7 | 61.2 | 27.6 | 30.5 | 41.9 | 42.1 | 47.8 | 34.9 | 39.4 | 45.7 | 48.3 | 50.4 |
DCNet[ | 33.8 | 37.2 | 42.8 | 51.3 | 59.4 | 23.4 | 24.4 | 30.6 | 36.8 | 46.4 | 32.0 | 34.6 | 39.8 | 42.7 | 49.6 |
Meta R-CNN[ | 19.7 | 25.6 | 35.1 | 45.6 | 50.8 | 10.7 | 19.3 | 29.4 | 30.2 | 44.8 | 14.5 | 18.1 | 27.6 | 40.9 | 46.3 |
Ours | 36.2 | 47.2 | 52.4 | 55.6 | 62.8 | 28.4 | 34.2 | 36.5 | 41.1 | 52.7 | 37.1 | 42.5 | 45.2 | 49.3 | 55.8 |
表1 VOC07测试集上的low-shot检测mAP
Table 1 Low-shot detection mAP on VOC07 test suite %
Methods | Novel-class split 1 | Novel-class split 2 | Novel-class split 3 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | | |
FSRW[ | 14.5 | 15.3 | 26.9 | 32.4 | 46.8 | 15.7 | 16.8 | 21.4 | 31.8 | 39.3 | 21.1 | 25.9 | 28.4 | 40.6 | 45.7 |
MetaDet[ | 18.8 | 19.4 | 28.6 | 35.2 | 49.0 | 20.6 | 23.5 | 27.5 | 31.7 | 42.5 | 20.5 | 23.4 | 29.7 | 42.1 | 44.5 |
FSOD-KT[ | 27.6 | 40.8 | 46.5 | 55.3 | 56.2 | 19.2 | 26.5 | 37.0 | 38.8 | 41.4 | 29.5 | 30.8 | 38.5 | 42.7 | 45.6 |
TFA w/fc[ | 36.8 | 35.85 | 41.6 | 55.8 | 56.9 | 18.3 | 27.1 | 31.5 | 35.4 | 38.2 | 27.8 | 33.4 | 40.5 | 48.4 | 50.9 |
TFA w/cos[ | 39.7 | 36.9 | 44.3 | 54.2 | 56.5 | 23.4 | 26.4 | 32.8 | 34.9 | 38.0 | 30.4 | 35.1 | 41.7 | 49.5 | 48.4 |
FSDetView[ | 24.5 | 35.5 | 42.9 | 48.5 | 54.3 | 21.5 | 27.6 | 31.8 | 37.5 | 44.9 | 21.4 | 30.2 | 35.8 | 37.7 | 49.5 |
MPSR[ | 41.6 | — | 51.0 | 55.6 | 61.7 | 24.3 | — | 39.4 | 39.7 | 47.2 | 35.4 | — | 42.1 | 48.1 | 49.5 |
AFD-Net[ | 33.2 | 39.5 | 51.6 | 55.2 | 60.6 | 24.8 | 29.7 | 40.5 | 44.2 | 48.1 | 27.3 | 35.1 | 43.5 | 47.6 | 51.2 |
CME[ | 41.4 | 45.8 | 50.2 | 54.7 | 61.2 | 27.6 | 30.5 | 41.9 | 42.1 | 47.8 | 34.9 | 39.4 | 45.7 | 48.3 | 50.4 |
DCNet[ | 33.8 | 37.2 | 42.8 | 51.3 | 59.4 | 23.4 | 24.4 | 30.6 | 36.8 | 46.4 | 32.0 | 34.6 | 39.8 | 42.7 | 49.6 |
Meta R-CNN[ | 19.7 | 25.6 | 35.1 | 45.6 | 50.8 | 10.7 | 19.3 | 29.4 | 30.2 | 44.8 | 14.5 | 18.1 | 27.6 | 40.9 | 46.3 |
Ours | 36.2 | 47.2 | 52.4 | 55.6 | 62.8 | 28.4 | 34.2 | 36.5 | 41.1 | 52.7 | 37.1 | 42.5 | 45.2 | 49.3 | 55.8 |
Shot | Methods | Novel-class split 1 | Novel-class split 2 | Novel-class split 3 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bird | bus | cow | mobike | sofa | mean | aero | bottle | cow | horse | sofa | mean | boat | cat | mobike | sheep | sofa | mean | ||
| FSRW[ | 13.2 | 15.5 | 30.7 | 35.2 | 7.9 | 20.5 | 11.7 | 9.1 | 15.2 | 23.9 | 18.4 | 15.7 | 10.5 | 44.0 | 18.4 | 18.3 | 5.2 | 19.3 |
MetaDet[ | 6.2 | 32.5 | 15.4 | 35.6 | 0.7 | 18.1 | 23.5 | 0.9 | 23.8 | 4.8 | 0.9 | 10.8 | 4.6 | 31.4 | 11.5 | 11.8 | 0.2 | 11.9 | |
MPSR[ | 33.8 | 41.9 | 57.2 | 53.0 | 21.4 | 41.5 | 21.4 | 9.5 | 35.9 | 30.6 | 25.3 | 24.5 | 14.3 | 47.8 | 35.4 | 32.4 | 22.4 | 30.5 | |
Ours | 48.6 | 39.4 | 44.6 | 53.5 | 21.5 | 41.5 | 31.8 | 7.6 | 27.6 | 39.4 | 38.7 | 29.0 | 19.7 | 55.9 | 17.2 | 18.2 | 43.9 | 31.0 | |
| FSRW[ | 21.3 | 12.4 | 16.7 | 17.2 | 9.3 | 15.4 | 28.5 | 0.9 | 27.3 | 0.0 | 19.2 | 15.2 | 5.2 | 46.5 | 18.9 | 26.7 | 12.0 | 21.9 |
MetaDet[ | 35.2 | 47.5 | 54.8 | 32.2 | 0.4 | 34.0 | 12.3 | 1.0 | 44.1 | 52.9 | 0.8 | 22.2 | 16.5 | 25.8 | 19.5 | 0.9 | 18.5 | 16.2 | |
MPSR[ | 38.5 | 16.4 | 56.3 | 57.3 | 32.4 | 40.2 | 36.4 | 9.1 | 46.8 | 27.5 | 34.2 | 30.8 | 18.7 | 45.3 | 59.7 | 49.2 | 32.8 | 41.1 | |
Ours | 48.3 | 55.7 | 52.0 | 59.5 | 29.8 | 49.1 | 36.5 | 9.7 | 51.2 | 55.7 | 17.9 | 34.2 | 15.9 | 69.7 | 59.9 | 41.4 | 37.2 | 44.8 | |
| FSRW[ | 26.2 | 19.4 | 20.5 | 20.5 | 27.0 | 27.7 | 29.4 | 4.9 | 34.5 | 6.7 | 37.6 | 22.6 | 11.3 | 39.5 | 20.7 | 23.1 | 33.6 | 25.6 |
MetaDet[ | 32.4 | 46.1 | 53.85 | 38.4 | 10.7 | 36.3 | 26.8 | 0.3 | 50.6 | 53.8 | 18.9 | 30.1 | 13.6 | 39.3 | 32.8 | 38.4 | 10.5 | 26.9 | |
MPSR[ | 35.1 | 60.7 | 61.4 | 61.3 | 43.6 | 52.5 | 47.6 | 9.0 | 47.3 | 45.2 | 40.5 | 37.9 | 14.9 | 62.8 | 57.9 | 37.5 | 42.1 | 43.0 | |
Ours | 59.4 | 67.8 | 69.3 | 64.9 | 45.2 | 61.3 | 45.4 | 15.6 | 47.6 | 46.6 | 38.9 | 38.8 | 24.2 | 65.1 | 55.9 | 52.8 | 36.8 | 47.0 | |
| FSRW[ | 31.6 | 22.5 | 39.6 | 40.0 | 37.1 | 34.2 | 33.1 | 9.6 | 38.4 | 25.9 | 44.0 | 30.2 | 14.5 | 57.6 | 50.2 | 38.6 | 41.5 | 40.5 |
MetaDet[ | 35.2 | 47.5 | 54.8 | 55.1 | 34.8 | 45.5 | 28.3 | 1.7 | 50.6 | 54.9 | 38.4 | 34.8 | 16.5 | 45.8 | 53.1 | 40.3 | 48.5 | 40.8 | |
MPSR[ | 37.9 | 65.5 | 55.1 | 68.6 | 47.5 | 54.9 | 47.6 | 10.7 | 45.1 | 45.8 | 47.6 | 39.4 | 20.7 | 56.8 | 68.1 | 48.7 | 45.6 | 48.0 | |
Ours | 58.3 | 65.7 | 43.0 | 66.7 | 41.5 | 55.0 | 55.4 | 19.7 | 53.9 | 55.7 | 37.2 | 44.4 | 25.9 | 69.7 | 63.2 | 45.4 | 50.9 | 51.0 | |
| FSRW[ | 30.0 | 62.4 | 43.2 | 60.1 | 39.7 | 47.1 | 43.1 | 13.5 | 41.6 | 58.4 | 39.5 | 39.2 | 20.5 | 51.7 | 55.9 | 42.3 | 36.2 | 41.3 |
MetaDet[ | 52.4 | 56.1 | 51.5 | 55.8 | 41.3 | 51.4 | 52.8 | 3.3 | 52.1 | 69.8 | 45.2 | 44.6 | 13.6 | 71.3 | 58.6 | 50.4 | 47.4 | 48.3 | |
MPSR[ | 48.2 | 72.8 | 68.2 | 71.2 | 48.3 | 61.7 | 51.6 | 16.4 | 54.8 | 65.4 | 47.1 | 47.1 | 24.8 | 55.3 | 67.1 | 50.5 | 47.2 | 49.6 | |
Ours | 59.4 | 67.8 | 69.3 | 69.8 | 44.6 | 62.2 | 59.4 | 19.6 | 58.9 | 66.6 | 59.6 | 52.8 | 34.2 | 73.1 | 69.5 | 52.8 | 55.9 | 57.1 |
表2 VOC07测试集上的 AP 和 mAP
Table 2 AP and mAP on VOC07 test suite %
Shot | Methods | Novel-class split 1 | Novel-class split 2 | Novel-class split 3 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bird | bus | cow | mobike | sofa | mean | aero | bottle | cow | horse | sofa | mean | boat | cat | mobike | sheep | sofa | mean | ||
| FSRW[ | 13.2 | 15.5 | 30.7 | 35.2 | 7.9 | 20.5 | 11.7 | 9.1 | 15.2 | 23.9 | 18.4 | 15.7 | 10.5 | 44.0 | 18.4 | 18.3 | 5.2 | 19.3 |
MetaDet[ | 6.2 | 32.5 | 15.4 | 35.6 | 0.7 | 18.1 | 23.5 | 0.9 | 23.8 | 4.8 | 0.9 | 10.8 | 4.6 | 31.4 | 11.5 | 11.8 | 0.2 | 11.9 | |
MPSR[ | 33.8 | 41.9 | 57.2 | 53.0 | 21.4 | 41.5 | 21.4 | 9.5 | 35.9 | 30.6 | 25.3 | 24.5 | 14.3 | 47.8 | 35.4 | 32.4 | 22.4 | 30.5 | |
Ours | 48.6 | 39.4 | 44.6 | 53.5 | 21.5 | 41.5 | 31.8 | 7.6 | 27.6 | 39.4 | 38.7 | 29.0 | 19.7 | 55.9 | 17.2 | 18.2 | 43.9 | 31.0 | |
| FSRW[ | 21.3 | 12.4 | 16.7 | 17.2 | 9.3 | 15.4 | 28.5 | 0.9 | 27.3 | 0.0 | 19.2 | 15.2 | 5.2 | 46.5 | 18.9 | 26.7 | 12.0 | 21.9 |
MetaDet[ | 35.2 | 47.5 | 54.8 | 32.2 | 0.4 | 34.0 | 12.3 | 1.0 | 44.1 | 52.9 | 0.8 | 22.2 | 16.5 | 25.8 | 19.5 | 0.9 | 18.5 | 16.2 | |
MPSR[ | 38.5 | 16.4 | 56.3 | 57.3 | 32.4 | 40.2 | 36.4 | 9.1 | 46.8 | 27.5 | 34.2 | 30.8 | 18.7 | 45.3 | 59.7 | 49.2 | 32.8 | 41.1 | |
Ours | 48.3 | 55.7 | 52.0 | 59.5 | 29.8 | 49.1 | 36.5 | 9.7 | 51.2 | 55.7 | 17.9 | 34.2 | 15.9 | 69.7 | 59.9 | 41.4 | 37.2 | 44.8 | |
| FSRW[ | 26.2 | 19.4 | 20.5 | 20.5 | 27.0 | 27.7 | 29.4 | 4.9 | 34.5 | 6.7 | 37.6 | 22.6 | 11.3 | 39.5 | 20.7 | 23.1 | 33.6 | 25.6 |
MetaDet[ | 32.4 | 46.1 | 53.85 | 38.4 | 10.7 | 36.3 | 26.8 | 0.3 | 50.6 | 53.8 | 18.9 | 30.1 | 13.6 | 39.3 | 32.8 | 38.4 | 10.5 | 26.9 | |
MPSR[ | 35.1 | 60.7 | 61.4 | 61.3 | 43.6 | 52.5 | 47.6 | 9.0 | 47.3 | 45.2 | 40.5 | 37.9 | 14.9 | 62.8 | 57.9 | 37.5 | 42.1 | 43.0 | |
Ours | 59.4 | 67.8 | 69.3 | 64.9 | 45.2 | 61.3 | 45.4 | 15.6 | 47.6 | 46.6 | 38.9 | 38.8 | 24.2 | 65.1 | 55.9 | 52.8 | 36.8 | 47.0 | |
| FSRW[ | 31.6 | 22.5 | 39.6 | 40.0 | 37.1 | 34.2 | 33.1 | 9.6 | 38.4 | 25.9 | 44.0 | 30.2 | 14.5 | 57.6 | 50.2 | 38.6 | 41.5 | 40.5 |
MetaDet[ | 35.2 | 47.5 | 54.8 | 55.1 | 34.8 | 45.5 | 28.3 | 1.7 | 50.6 | 54.9 | 38.4 | 34.8 | 16.5 | 45.8 | 53.1 | 40.3 | 48.5 | 40.8 | |
MPSR[ | 37.9 | 65.5 | 55.1 | 68.6 | 47.5 | 54.9 | 47.6 | 10.7 | 45.1 | 45.8 | 47.6 | 39.4 | 20.7 | 56.8 | 68.1 | 48.7 | 45.6 | 48.0 | |
Ours | 58.3 | 65.7 | 43.0 | 66.7 | 41.5 | 55.0 | 55.4 | 19.7 | 53.9 | 55.7 | 37.2 | 44.4 | 25.9 | 69.7 | 63.2 | 45.4 | 50.9 | 51.0 | |
| FSRW[ | 30.0 | 62.4 | 43.2 | 60.1 | 39.7 | 47.1 | 43.1 | 13.5 | 41.6 | 58.4 | 39.5 | 39.2 | 20.5 | 51.7 | 55.9 | 42.3 | 36.2 | 41.3 |
MetaDet[ | 52.4 | 56.1 | 51.5 | 55.8 | 41.3 | 51.4 | 52.8 | 3.3 | 52.1 | 69.8 | 45.2 | 44.6 | 13.6 | 71.3 | 58.6 | 50.4 | 47.4 | 48.3 | |
MPSR[ | 48.2 | 72.8 | 68.2 | 71.2 | 48.3 | 61.7 | 51.6 | 16.4 | 54.8 | 65.4 | 47.1 | 47.1 | 24.8 | 55.3 | 67.1 | 50.5 | 47.2 | 49.6 | |
Ours | 59.4 | 67.8 | 69.3 | 69.8 | 44.6 | 62.2 | 59.4 | 19.6 | 58.9 | 66.6 | 59.6 | 52.8 | 34.2 | 73.1 | 69.5 | 52.8 | 55.9 | 57.1 |
Shot | Methods | | | | | | |
---|---|---|---|---|---|---|---|
| FSRW[ | 5.5 | 12.4 | 4.8 | 0.7 | 3.3 | 10.7 |
MetaDet[ | 7.4 | 13.9 | 6.2 | 1.3 | 4.0 | 12.5 | |
FSDetView[ | 12.3 | 27.6 | 9.8 | 2.4 | 7.6 | 13.9 | |
MPSR[ | 9.4 | 17.8 | 9.8 | 3.4 | 9.0 | 15.8 | |
DCNet[ | 12.5 | 23.8 | 11.6 | 4.5 | 13.7 | 21.1 | |
Meta R-CNN[ | 8.4 | 19.2 | 6.4 | 2.2 | 7.8 | 14.3 | |
Ours | 15.9 | 28.4 | 13.5 | 3.9 | 15.4 | 24.6 | |
| FSRW[ | 9.3 | 19.5 | 7.4 | 0.9 | 4.8 | 16.5 |
MetaDet[ | 11.5 | 21.7 | 8.4 | 1.3 | 6.5 | 17.8 | |
FSDetView[ | 14.2 | 30.9 | 12.4 | 3.7 | 15.9 | 23.4 | |
MPSR[ | 14.0 | 28.7 | 14.2 | 4.1 | 12.5 | 22.8 | |
DCNet[ | 18.9 | 32.7 | 17.0 | 6.9 | 16.4 | 26.7 | |
Meta R-CNN[ | 12.3 | 25.6 | 11.1 | 2.5 | 11.5 | 19.1 | |
Ours | 17.8 | 32.9 | 16.3 | 4.9 | 17.2 | 26.8 |
表3 COCO2014测试集上的 AP 和 mAP
Table 3 AP and mAP on COCO2014 test suite %
Shot | Methods | | | | | | |
---|---|---|---|---|---|---|---|
| FSRW[ | 5.5 | 12.4 | 4.8 | 0.7 | 3.3 | 10.7 |
MetaDet[ | 7.4 | 13.9 | 6.2 | 1.3 | 4.0 | 12.5 | |
FSDetView[ | 12.3 | 27.6 | 9.8 | 2.4 | 7.6 | 13.9 | |
MPSR[ | 9.4 | 17.8 | 9.8 | 3.4 | 9.0 | 15.8 | |
DCNet[ | 12.5 | 23.8 | 11.6 | 4.5 | 13.7 | 21.1 | |
Meta R-CNN[ | 8.4 | 19.2 | 6.4 | 2.2 | 7.8 | 14.3 | |
Ours | 15.9 | 28.4 | 13.5 | 3.9 | 15.4 | 24.6 | |
| FSRW[ | 9.3 | 19.5 | 7.4 | 0.9 | 4.8 | 16.5 |
MetaDet[ | 11.5 | 21.7 | 8.4 | 1.3 | 6.5 | 17.8 | |
FSDetView[ | 14.2 | 30.9 | 12.4 | 3.7 | 15.9 | 23.4 | |
MPSR[ | 14.0 | 28.7 | 14.2 | 4.1 | 12.5 | 22.8 | |
DCNet[ | 18.9 | 32.7 | 17.0 | 6.9 | 16.4 | 26.7 | |
Meta R-CNN[ | 12.3 | 25.6 | 11.1 | 2.5 | 11.5 | 19.1 | |
Ours | 17.8 | 32.9 | 16.3 | 4.9 | 17.2 | 26.8 |
Components | VOC07 split 1 | ||||
---|---|---|---|---|---|
| | | | | |
Base | 20.0 | 25.4 | 38.4 | 44.8 | 50.5 |
Base+FSE | 22.3 | 28.2 | 40.9 | 48.3 | 52.1 |
Base+FSS | 23.1 | 29.1 | 41.7 | 49.6 | 53.4 |
Base+FSE +FSS | 23.7 | 29.7 | 42.8 | 50.2 | 54.3 |
Base+MFF | 32.6 | 34.9 | 46.0 | 47.4 | 52.8 |
Base+MFF+FS | 40.9 | 45.8 | 48.9 | 54.7 | 57.9 |
Base+MFF+FS+OL | 42.3 | 49.3 | 52.7 | 58.0 | 64.4 |
Base+FSE+FSS+MFF+FS+OL | 43.7 | 50.4 | 53.6 | 59.8 | 66.4 |
表4 不同模块在VOC07测试集上的low-shot检测mAP
Table 4 Low-shot detection mAP of different modules on VOC07 test suite %
Components | VOC07 split 1 | ||||
---|---|---|---|---|---|
| | | | | |
Base | 20.0 | 25.4 | 38.4 | 44.8 | 50.5 |
Base+FSE | 22.3 | 28.2 | 40.9 | 48.3 | 52.1 |
Base+FSS | 23.1 | 29.1 | 41.7 | 49.6 | 53.4 |
Base+FSE +FSS | 23.7 | 29.7 | 42.8 | 50.2 | 54.3 |
Base+MFF | 32.6 | 34.9 | 46.0 | 47.4 | 52.8 |
Base+MFF+FS | 40.9 | 45.8 | 48.9 | 54.7 | 57.9 |
Base+MFF+FS+OL | 42.3 | 49.3 | 52.7 | 58.0 | 64.4 |
Base+FSE+FSS+MFF+FS+OL | 43.7 | 50.4 | 53.6 | 59.8 | 66.4 |
[1] | GIRSHICK R B, DONAHUE J, DARRELL T, et al. Rich fea-ture hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587. |
[2] | GIRSHICK R B. Fast R-CNN[C]// Proceedings of the 14th IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448. |
[3] | YAN X P, CHEN Z L, XU A N, et al. Meta R-CNN: towards general solver for instance-level low-shot learning[C]// Pro-ceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9577-9586. |
[4] | REDMON J, DIVVALA S K, GIRSHICK R B, et al. You only look once: unified, real-time object detection[C]// Procee-dings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Was-hington: IEEE Computer Society, 2016: 779-788. |
[5] | 祝钧桃, 姚光乐, 张葛祥, 等. 深度神经网络的小样本学习综述[J]. 计算机工程与应用, 2021, 57(7): 22-33. |
ZHU J T, YAO G L, ZHANG G X, et al. Survey of few shot learning of deep neural network[J]. Computer Engineering and Applications, 2021, 57(7): 22-33. | |
[6] | 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25. |
XU D G, WANG L, LI F. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25. | |
[7] | CHEN H, WANG Y L, WANG G Y, et al. LSTD: a low-shot transfer detector for object detection[C]// Proceedings of the 32nd AAAI Conference on A.pngicial Intelligence, the 30th Innovative Applications of A.pngicial Intelligence, and the 8th AAAI Symposium on Educational Advances in Arti-ficial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 2836-2843. |
[8] | REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN:towards real-time object detection with region proposal net-works[C]// Advances in Neural Information Processing Sys-tems 28, Montreal, Dec 7-12, 2015. Red Hook: Curran Asso-ciates, 2015: 91-99. |
[9] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. |
[10] | KARLINSKY L, SHTOK J, HARARY S, et al. RepMet: representative-based metric learning for classification and few-shot object detection[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5197-5206. |
[11] | KANG B Y, LIU Z, WANG X, et al. Few-shot object detec-tion via feature reweighting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 8419-8428. |
[12] | FAN Q, ZHUO W, TANG C K, et al. Few-shot object detec-tion with attention-RPN and multi-relation detector[C]// Pro-ceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Pis-cataway: IEEE, 2020: 4012-4021. |
[13] | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// Advances in Neural In-formation Processing Systems 29, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 3630-3638. |
[14] | LI Y T, CHENG Y, LIU L, et al. Low-shot object detection via classification refinement[J]. arXiv: 2005. 02641, 2020. |
[15] | WU J X, LIU S T, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection[C]// LNCS 12361: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 456-472. |
[16] | 韩子硕, 王春平, 付强, 等. 基于超密集特征金字塔网络的SAR图像舰船检测[J]. 系统工程与电子技术, 2020, 42(10): 2214-2222. |
HAN Z S, WANG C P, FU Q, et al. Ship detection in SAR images based on super dense feature pyramid networks[J]. Systems Engineering and Electronics, 2020, 42(10): 2214-2222. | |
[17] | YANG Z, WANG Y L, CHEN X Y, et al. Context-Transformer: tackling object confusion for few-shot detection[C]// Procee-dings of the 34th AAAI Conference on A.pngicial Intelli-gence, the 32nd Innovative Applications of A.pngicial Intelli-gence Conference, the 10th AAAI Symposium on Educatio-nal Advances in A.pngicial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12653-12660. |
[18] | KIM G, JUNG H G, LEE S W. Few-shot object detection via knowledge transfer[C]// Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics, Toronto, Oct 11-14, 2020. Piscataway: IEEE, 2020: 3564-3569. |
[19] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2961-2969. |
[20] | LIN T Y, MAIRE M, BELONGIE S J, et al. Microsoft COCO: common objects in context[C]// LNCS 8693: Pro-ceedings of the 13th European Conference on Computer Vi-sion, Zurich, Sep 6-12, 2014. Cham: Springer. 2014: 740-755. |
[21] | HE K, ZHANG X, REN S, et al. Deep residual learing for image recognition[J]. arXiv:1512. 03385, 2015. |
[22] | WANG Y X, RAMANAN D, HEBERT M. Meta-learning to detect rare objects[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9924-9933. |
[23] | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection[J]. arXiv: 2003. 06957, 2020. |
[24] | XIAO Y, MARLET R. Few-shot object detection and view-point estimation for objects in the wild[C]// LNCS 12362: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 192-210. |
[25] | LIU L Y, MA B, ZHANG Y L, et al. AFD-Net: adaptive fully-dual network for few-shot object detection[C]// Procee-dings of the 29th ACM International Conference on Multi-media, Oct 20-24, 2021. New York: ACM, 2021: 2549-2557. |
[26] | LI B H, YANG B Y, LIU C, et al. Beyond max-margin: class margin equilibrium for few-shot object detection[C]// Pro-ceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 7363-7372. |
[27] | HU H Z, BAI S, LI A X, et al. Dense relation distillation with context-aware aggregation for few-shot object detec-tion[C]// Proceedings of the 2021 IEEE Conference on Com-puter Vision and Pattern Recognition, Jun 19-25, 2021. Pis-cataway: IEEE, 2021: 10185-10194. |
[1] | 张麟宇, 涂志莹, 杭少石, 张柏林, 初佃辉. 面向智慧康养的数据集构建方法及其应用[J]. 计算机科学与探索, 2022, 16(7): 1543-1551. |
[2] | 赵运基, 范存良, 张新良. 融合多特征和通道感知的目标跟踪算法[J]. 计算机科学与探索, 2022, 16(6): 1417-1428. |
[3] | 孙方伟, 李承阳, 谢永强, 李忠博, 杨才东, 齐锦. 深度学习应用于遮挡目标检测算法综述[J]. 计算机科学与探索, 2022, 16(6): 1243-1259. |
[4] | 董文轩, 梁宏涛, 刘国柱, 胡强, 于旭. 深度卷积应用于目标检测算法综述[J]. 计算机科学与探索, 2022, 16(5): 1025-1042. |
[5] | 程卫月, 张雪琴, 林克正, 李骜. 融合全局与局部特征的深度卷积神经网络算法[J]. 计算机科学与探索, 2022, 16(5): 1146-1154. |
[6] | 伏轩仪, 张銮景, 梁文科, 毕方明, 房卫东. 锚点机制在目标检测领域的发展综述[J]. 计算机科学与探索, 2022, 16(4): 791-805. |
[7] | 包广斌, 李港乐, 王国雄. 面向多模态情感分析的双模态交互注意力[J]. 计算机科学与探索, 2022, 16(4): 909-916. |
[8] | 赵鹏飞, 谢林柏, 彭力. 融合注意力机制的深层次小目标检测算法[J]. 计算机科学与探索, 2022, 16(4): 927-937. |
[9] | 王燕妮, 余丽仙. 注意力与多尺度有效融合的SSD目标检测算法[J]. 计算机科学与探索, 2022, 16(2): 438-447. |
[10] | 阮晨钊, 张祥森, 刘科, 赵增顺. 深度学习的人-物体交互检测研究进展[J]. 计算机科学与探索, 2022, 16(2): 323-336. |
[11] | 那峙雄, 樊涛, 孙涛, 谢祥颖, 来广志. 多损失融合的小样本光伏组件隐裂检测算法[J]. 计算机科学与探索, 2022, 16(2): 458-467. |
[12] | 钱伍, 王国中, 李国平. 改进YOLOv5的交通灯实时检测鲁棒算法[J]. 计算机科学与探索, 2022, 16(1): 231-241. |
[13] | 李科岑, 王晓强, 林浩, 李雷孝, 杨艳艳, 孟闯, 高静. 深度学习中的单阶段小目标检测方法综述[J]. 计算机科学与探索, 2022, 16(1): 41-58. |
[14] | 李志欣, 陈圣嘉, 周韬, 马慧芳. 协同级联网络和对抗网络的目标检测[J]. 计算机科学与探索, 2022, 16(1): 217-230. |
[15] | 王迪聪, 白晨帅, 邬开俊. 基于深度学习的视频目标检测综述[J]. 计算机科学与探索, 2021, 15(9): 1563-1577. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||