计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (9): 1969-1989.DOI: 10.3778/j.issn.1673-9418.2203127
收稿日期:
2022-03-30
修回日期:
2022-06-08
出版日期:
2022-09-01
发布日期:
2022-09-15
通讯作者:
+ E-mail: 1504886520@qq.com作者简介:
张立华(1963—),男,北京人,博士,教授,主要研究方向为机器学习、金融大数据、金融风险建模。基金资助:
ZHANG Lihua1, ZHANG Shunshun2,+()
Received:
2022-03-30
Revised:
2022-06-08
Online:
2022-09-01
Published:
2022-09-15
About author:
ZHANG Lihua, born in 1963, Ph.D., professor. His research interests include machine learning,financial big data and financial risks modelling.Supported by:
摘要:
区域金融风险防控(RFRP)无论在管理区域传统金融风险(TFR)还是坚守不发生区域金融系统风险(FSR)中都是不可或缺的。随着大数据规模的持续增长,金融风险形态变化的不确定性,传统计量方法模拟金融风险防控的效率、精度、应用等方面都面临着无法克服的困境。当下,越来越多的机器学习(ML)模拟RFRP防控的新方法和新技术受到研究者的重视。首先提出了RFRP防控新的科学分类和ML观念基础;其次总结了区域TFR防控的ML理论方法和应用技术,对各类代表性研究所论述区域TFR防控的关键逻辑、模型算法、学习效果进行了比对解析,对ML不同方法的优点、局限和传统场景进行了归类分析;然后梳理了区域FSR防控的ML理论方法和应用研究,对各类典型文献所解析区域FSR防控的关键脉络、ML算法、学习效果进行了对比研究,对ML不同模型的优势、缺陷和金融风险场景进行了阐述研究;最后提出了六个ML模拟RFRP防控的前景技术和新兴方向。
中图分类号:
张立华, 张顺顺. 机器学习解构区域金融风险防控研究进展[J]. 计算机科学与探索, 2022, 16(9): 1969-1989.
ZHANG Lihua, ZHANG Shunshun. Progress on Machine Learning for Regional Financial Risk Prevention[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1969-1989.
分类 | 方法 | 文献算法 | 优点 | 局限 | 传统场景 |
---|---|---|---|---|---|
信用 风险 | 监督学习 | Kim等人[ | 预测精确度优于传统计量技术 | 未引入非金融变量、数据集规模 | 预测破产或信用评分 |
无监督学习 | Lim等人[ | 分类精度优于传统计量技术 | 聚类算法、数据集规模 | 识别破产或信用违约风险 | |
市场 风险 | 波动率机器学习 | Luong等人[ | 市场波动率优于传统计量方法 | 实验数据集、文本有效性 | 市场风险防控 |
组合的机器学习 | Papadimitriou等人[ | 组合风险优于传统计量方法 | 训练测试集规模、模型泛化 | 风险最小化投资组合 | |
操作 风险 | 监督学习 | Bahnsen等人[ | 欺诈异常检测优于传统统计方法 | 数据集、模型基础准确性 | 预防异常欺诈监督学习 |
无监督学习 | Nian等人[ | 异常欺诈检测优于传统统计方法 | 异常、欺诈检测系统 | 预防异常欺诈无监督学习 | |
保险 风险 | 索赔的机器学习 | Verbelen等人[ | 增强了图像数据集 | 图像去噪、图像去雾的增强技术 | 保单索赔 |
死亡的机器学习 | Lee等人[ | 图像数据集的安全性、实时性 | 图像数据集数据规模和密度 | 死亡保险 |
表1 TFR防控的不同ML方法比较
Table 1 Comparison of ML methods for TFR prevention
分类 | 方法 | 文献算法 | 优点 | 局限 | 传统场景 |
---|---|---|---|---|---|
信用 风险 | 监督学习 | Kim等人[ | 预测精确度优于传统计量技术 | 未引入非金融变量、数据集规模 | 预测破产或信用评分 |
无监督学习 | Lim等人[ | 分类精度优于传统计量技术 | 聚类算法、数据集规模 | 识别破产或信用违约风险 | |
市场 风险 | 波动率机器学习 | Luong等人[ | 市场波动率优于传统计量方法 | 实验数据集、文本有效性 | 市场风险防控 |
组合的机器学习 | Papadimitriou等人[ | 组合风险优于传统计量方法 | 训练测试集规模、模型泛化 | 风险最小化投资组合 | |
操作 风险 | 监督学习 | Bahnsen等人[ | 欺诈异常检测优于传统统计方法 | 数据集、模型基础准确性 | 预防异常欺诈监督学习 |
无监督学习 | Nian等人[ | 异常欺诈检测优于传统统计方法 | 异常、欺诈检测系统 | 预防异常欺诈无监督学习 | |
保险 风险 | 索赔的机器学习 | Verbelen等人[ | 增强了图像数据集 | 图像去噪、图像去雾的增强技术 | 保单索赔 |
死亡的机器学习 | Lee等人[ | 图像数据集的安全性、实时性 | 图像数据集数据规模和密度 | 死亡保险 |
文献算法 | 文献模型局限性 |
---|---|
Kim等人[ | 限于多类分类支持向量机模型最有效、不同软件平台实验假设 |
Kim等人[ | 受限于未引入非金融变量、公司信用评分、融合性集成算法 |
Barboza等人[ | 限于交叉验证过拟合、未引入宏观经济数据 |
Ghodselahi等人[ | 局限于数据库规模、集成模型融合度 |
Hu等人[ | 限于ML算法何时使用、变量选择和数据缺失、最佳拟合优度问题 |
Wang等人[ | 受限于工商银行收集公司的数据规模、混合模型集成度 |
Ampountolas 等人[ | 限于小额贷款机构的真实数据、特征选择不适用于其他国家和其他机构 |
Harding等人[ | 受限于违约数据规模、商业贷款违约处置 |
Lim等人[ | 限于小规模数据集、分割数据缩短观测期限 |
Kou等人[ | 受限于多准则决策方法与聚类算法不一致、数据规模 |
表2 信用风险预测方法的局限性
Table 2 Limitation of credit risk model
文献算法 | 文献模型局限性 |
---|---|
Kim等人[ | 限于多类分类支持向量机模型最有效、不同软件平台实验假设 |
Kim等人[ | 受限于未引入非金融变量、公司信用评分、融合性集成算法 |
Barboza等人[ | 限于交叉验证过拟合、未引入宏观经济数据 |
Ghodselahi等人[ | 局限于数据库规模、集成模型融合度 |
Hu等人[ | 限于ML算法何时使用、变量选择和数据缺失、最佳拟合优度问题 |
Wang等人[ | 受限于工商银行收集公司的数据规模、混合模型集成度 |
Ampountolas 等人[ | 限于小额贷款机构的真实数据、特征选择不适用于其他国家和其他机构 |
Harding等人[ | 受限于违约数据规模、商业贷款违约处置 |
Lim等人[ | 限于小规模数据集、分割数据缩短观测期限 |
Kou等人[ | 受限于多准则决策方法与聚类算法不一致、数据规模 |
文献算法 | 文献模型局限性 |
---|---|
Luong等人[ | 限于高频数据集、Boostrop自助抽样 |
Park等人[ | 受限于实验数据规模、数据稀疏、变量数据的高维度 |
Luo等人[ | 限于整个样板集、子样本划分及规模 |
Hochreiter等人[ | 局限于大样本数据、网络收敛费时 |
Ramos-Pérez等人[ | 限于S&P数据集、混合模型融合度 |
Nizer等人[ | 受限于公司新闻敏感性、分类法效果 |
Manela等人[ | 限于华尔街杂志文本集合、文本的有效性 |
表3 预测波动率方法的局限性
Table 3 Limitation of volatility prediction models
文献算法 | 文献模型局限性 |
---|---|
Luong等人[ | 限于高频数据集、Boostrop自助抽样 |
Park等人[ | 受限于实验数据规模、数据稀疏、变量数据的高维度 |
Luo等人[ | 限于整个样板集、子样本划分及规模 |
Hochreiter等人[ | 局限于大样本数据、网络收敛费时 |
Ramos-Pérez等人[ | 限于S&P数据集、混合模型融合度 |
Nizer等人[ | 受限于公司新闻敏感性、分类法效果 |
Manela等人[ | 限于华尔街杂志文本集合、文本的有效性 |
文献算法 | 文献模型局限性 |
---|---|
Papadimitriou等人[ | 限于标准普尔500指数极端变动、数据过拟合 |
Ban等人[ | 受限于KF网站3个数据集、拟合时间花费较长 |
Pinelis等人[ | 限于KF等网站月度数据、重复抽样技术 |
Li等人[ | 局限于单期均值回归存在性、模型实际泛化性、破产资产 |
Li等人[ | 限于数据挖掘与机器学习的融合 |
Jiang等人[ | 受限于比特币零滑点、零市场影响假设的设计 |
Almahdi等人[ | 限于目标函数收敛性、周收盘价训练集及测试集规模 |
表4 优化投资组合的局限性
Table 4 Limitation of portfolio optimization
文献算法 | 文献模型局限性 |
---|---|
Papadimitriou等人[ | 限于标准普尔500指数极端变动、数据过拟合 |
Ban等人[ | 受限于KF网站3个数据集、拟合时间花费较长 |
Pinelis等人[ | 限于KF等网站月度数据、重复抽样技术 |
Li等人[ | 局限于单期均值回归存在性、模型实际泛化性、破产资产 |
Li等人[ | 限于数据挖掘与机器学习的融合 |
Jiang等人[ | 受限于比特币零滑点、零市场影响假设的设计 |
Almahdi等人[ | 限于目标函数收敛性、周收盘价训练集及测试集规模 |
文献算法 | 文献模型局限性 |
---|---|
Bahnsen等人[ | 限于信用卡公司数据集、获取交易特征的时间太长 |
Abbasi等人[ | 受限于其6项假设、年度或季度文本特征信息集规模 |
Kusaya等人[ | 限于财务报表数据准确性、模型基准的准确性 |
Nian等人[ | 局限于分类或有序数据集特征、全局异常检测的单聚类策略 |
Chalapathy 等人[ | 限于ML各类模型解决异常检测的假设、优点和缺陷 |
Fiore等人[ | 受限于信用卡训练数据集、识别欺诈检测系统 |
表5 操作风险预测方法的局限性
Table 5 Limitation of operational risk prediction models
文献算法 | 文献模型局限性 |
---|---|
Bahnsen等人[ | 限于信用卡公司数据集、获取交易特征的时间太长 |
Abbasi等人[ | 受限于其6项假设、年度或季度文本特征信息集规模 |
Kusaya等人[ | 限于财务报表数据准确性、模型基准的准确性 |
Nian等人[ | 局限于分类或有序数据集特征、全局异常检测的单聚类策略 |
Chalapathy 等人[ | 限于ML各类模型解决异常检测的假设、优点和缺陷 |
Fiore等人[ | 受限于信用卡训练数据集、识别欺诈检测系统 |
文献算法 | 文献模型局限性 |
---|---|
Verbelen等人[ | 忽略传统的风险因素,未考虑远程信息处理预测变量的成分结构 |
Tsai等人[ | 图像无动态模糊和观测噪声,不考虑光学系统的点扩散函数 |
Ghaffar等人[ | 图像增强技术的图像去噪和图像去雾时效果不明显 |
Ledig等人[ | 高频数据的图像效果不佳,训练时间较长,图像纹理重建有待提高 |
Li等人[ | 物联网提取图像先验信息不足,数据传输质量不高,场景没有充分开发和相互补充 |
表6 索赔风险预测方法的局限性
Table 6 Limitation of claims risk prediction models
文献算法 | 文献模型局限性 |
---|---|
Verbelen等人[ | 忽略传统的风险因素,未考虑远程信息处理预测变量的成分结构 |
Tsai等人[ | 图像无动态模糊和观测噪声,不考虑光学系统的点扩散函数 |
Ghaffar等人[ | 图像增强技术的图像去噪和图像去雾时效果不明显 |
Ledig等人[ | 高频数据的图像效果不佳,训练时间较长,图像纹理重建有待提高 |
Li等人[ | 物联网提取图像先验信息不足,数据传输质量不高,场景没有充分开发和相互补充 |
文献算法 | 文献模型局限性 |
---|---|
Lee等人[ | 置信带较窄,死亡风险低估,时间短时低估更严重 |
Richman等人[ | 精算和人口统计中神经网络模型预测的不确定性 |
Hainaut[ | 未计入传统风险指标因素、舍去远程信息系统预测变量的成分结构 |
Karthikeyan等人[ | 图像数据集的数据规模和密度 |
Sriram等人[ | 放射科医生对死亡率的概率评分、图像特征信息发现与临床实际表现的差异 |
Gourdeau等人[ | 图像数据集规模偏差,治疗临床信息缺失,预测放射轨迹排除“稳定”图像 |
表7 死亡风险预测方法的局限性
Table 7 Limitation of mortality risk prediction models
文献算法 | 文献模型局限性 |
---|---|
Lee等人[ | 置信带较窄,死亡风险低估,时间短时低估更严重 |
Richman等人[ | 精算和人口统计中神经网络模型预测的不确定性 |
Hainaut[ | 未计入传统风险指标因素、舍去远程信息系统预测变量的成分结构 |
Karthikeyan等人[ | 图像数据集的数据规模和密度 |
Sriram等人[ | 放射科医生对死亡率的概率评分、图像特征信息发现与临床实际表现的差异 |
Gourdeau等人[ | 图像数据集规模偏差,治疗临床信息缺失,预测放射轨迹排除“稳定”图像 |
文献算法 | 文献模型局限性 |
---|---|
Amini等人[ | 限于弹性测度和资本比例、与Basel协议不一致的最低资本要求、节点特征的观测性 |
Giudici等人[ | 受限于金融机构相互关联性、BIS本地银行业数据库规模 |
Yu等人[ | 限于控制的资本储备比例、银行发生巨额资产违约 |
Battiston等人[ | 限于金融网络复杂性与降低系统风险的此消彼长关联性 |
Poledna等人[ | 限于银行网络层数、违约后可回收比率 |
Grassia等人[ | 受限于最小拆解单元集规模、非确定性多项式计算难题 |
表8 网络风险预测方法的局限性
Table 8 Limitation of network risk prediction models
文献算法 | 文献模型局限性 |
---|---|
Amini等人[ | 限于弹性测度和资本比例、与Basel协议不一致的最低资本要求、节点特征的观测性 |
Giudici等人[ | 受限于金融机构相互关联性、BIS本地银行业数据库规模 |
Yu等人[ | 限于控制的资本储备比例、银行发生巨额资产违约 |
Battiston等人[ | 限于金融网络复杂性与降低系统风险的此消彼长关联性 |
Poledna等人[ | 限于银行网络层数、违约后可回收比率 |
Grassia等人[ | 受限于最小拆解单元集规模、非确定性多项式计算难题 |
文献算法 | 文献模型局限性 |
---|---|
Sarlin[ | 限于4维数据的复杂性、不同数据实证识别与测算的差异 |
Sarlin[ | 受限于宏观审慎数据结构、系统风险可视分析平台 |
Cerchiello等人[ | 限于意大利上市银行数量、金融推文大数据规模 |
Cerchiello等人[ | 局限于高斯图模型泛化性、金融市场数据与图文数据的融合性 |
Flood等人[ | 限于数据质量、数据标准和数据整合、元数据管理 |
Jagadish等人[ | 受限于大数据的时效性、不完整性、私密性及数据整合加总技术 |
Nyman等人[ | 限于市场文本信息集、噪音与信号的识别测度 |
Chiang等人[ | 局限于台湾省电子产业情绪数据、监督学习与半监督学习的融合性 |
Meyer等人[ | 受限于金融新闻机构和网站新闻资源、自然语言不规范、离散的用词向量空间 |
表9 大数据风险预测方法的局限性
Table 9 Limitation of big data risk prediction models
文献算法 | 文献模型局限性 |
---|---|
Sarlin[ | 限于4维数据的复杂性、不同数据实证识别与测算的差异 |
Sarlin[ | 受限于宏观审慎数据结构、系统风险可视分析平台 |
Cerchiello等人[ | 限于意大利上市银行数量、金融推文大数据规模 |
Cerchiello等人[ | 局限于高斯图模型泛化性、金融市场数据与图文数据的融合性 |
Flood等人[ | 限于数据质量、数据标准和数据整合、元数据管理 |
Jagadish等人[ | 受限于大数据的时效性、不完整性、私密性及数据整合加总技术 |
Nyman等人[ | 限于市场文本信息集、噪音与信号的识别测度 |
Chiang等人[ | 局限于台湾省电子产业情绪数据、监督学习与半监督学习的融合性 |
Meyer等人[ | 受限于金融新闻机构和网站新闻资源、自然语言不规范、离散的用词向量空间 |
文献算法 | 文献模型局限性 |
---|---|
Duttagupta等人[ | 限于金融稳健与宏观基本面复杂交互性、央行独立性及公司治理脆弱时间序列数据缺失 |
Ward[ | 受限于分类树合成集合与多种预测变量的 融合 |
Casabianca等人[ | 限于银行和宏观经济指标集成数据集、宏观经济累计失衡 |
Fan等人[ | 局限于风险协方差矩阵设计、因子模型准确率的未知性 |
Guidolin等人[ | 限于ABS债券、国债、公司债券和股票数据集的规模和结构 |
Lang等人[ | 受限于政策偏好预期、预测期限、欧盟银行数据集、样本预选择 |
Battiston等人[ | 限于金融经济与生态病理等学科交叉发展,以及数据、方法、指标等复杂融合 |
Marcus等人[ | 局限于AI如何实现金融稳定、承担监管责任、设计经济政策、进行自动监管 |
Schuldenzucker 等人[ | 受限于信用违约互换合约估值的一致性向量、加权依赖关系图表示的高度非线性 |
表10 稳定性风险预测方法的局限性
Table 10 Limitation of stability risk prediction models
文献算法 | 文献模型局限性 |
---|---|
Duttagupta等人[ | 限于金融稳健与宏观基本面复杂交互性、央行独立性及公司治理脆弱时间序列数据缺失 |
Ward[ | 受限于分类树合成集合与多种预测变量的 融合 |
Casabianca等人[ | 限于银行和宏观经济指标集成数据集、宏观经济累计失衡 |
Fan等人[ | 局限于风险协方差矩阵设计、因子模型准确率的未知性 |
Guidolin等人[ | 限于ABS债券、国债、公司债券和股票数据集的规模和结构 |
Lang等人[ | 受限于政策偏好预期、预测期限、欧盟银行数据集、样本预选择 |
Battiston等人[ | 限于金融经济与生态病理等学科交叉发展,以及数据、方法、指标等复杂融合 |
Marcus等人[ | 局限于AI如何实现金融稳定、承担监管责任、设计经济政策、进行自动监管 |
Schuldenzucker 等人[ | 受限于信用违约互换合约估值的一致性向量、加权依赖关系图表示的高度非线性 |
文献算法 | 文献模型局限性 |
---|---|
Kara[ | 限于不对称国家资本充足要求的协调限制、国家宏观审慎监管不足 |
Posner等人[ | 受限于收益成本方法的稳健经济基础、健全金融监管体系 |
Bosma[ | 限于政策工具之间相互作用、建设性模糊假设 |
Clark等人[ | 局限于随机干预成本、不成熟干预时机 |
表11 监管量化预测方法的局限性
Table 11 Limitation of quantitative supervision prediction models
文献算法 | 文献模型局限性 |
---|---|
Kara[ | 限于不对称国家资本充足要求的协调限制、国家宏观审慎监管不足 |
Posner等人[ | 受限于收益成本方法的稳健经济基础、健全金融监管体系 |
Bosma[ | 限于政策工具之间相互作用、建设性模糊假设 |
Clark等人[ | 局限于随机干预成本、不成熟干预时机 |
类别 | 方法 | 文献算法 | 优势 | 缺陷 | 适应场景 |
---|---|---|---|---|---|
金融 系统 风险 | 金融网络风险 | Amini等人[ | 风险敞口传导测度优于传统方法 | 受限于金融机构关联性、违约资产 | 金融网络的风险敞口与传导 |
Battiston等人[ | 捕捉网络结构的关键特征 | 受限于网络多层结构的复杂度 | 金融机构网络的结构 | ||
大数据分析 | Sarlin[ | 大数据分析优于传统计量方法 | 限于实验、推文大数据规模 | 系统风险大数据分析 | |
Cerchiello等人[ | 增强丰富了传统数据 | 限于数据质量、时效性、融合性 | 系统风险的数据问题 | ||
Nyman等人[ | 情绪分析预测系统 风险 | 限于用词向量空间推文新闻数据 | 金融市场的情绪分析 | ||
金融稳定性 | Duttagupta等人[ | 风险预警优于传统计量模型 | 受限于宏观指标数据、决策树集成 | 适于金融稳定的决策树 | |
Fan等人[ | 建立稳定稀疏投资 组合 | 受限于数据选择、规模、结构 | 适于金融稳定的稀疏模型 | ||
Battiston等人[ | 金融稳定的网络方法 | 受限于多学科数据、方法融合 | 适于金融稳定的无监督学习 | ||
风险监管量化 | Kara[ | 系统风险监管的政策依赖、优化网络分析 | 限于监管网络、监管成本、金融创新等 | 风险监管 |
表12 FSR防控的不同ML方法比较
Table 12 Comparison of ML methods for FSR prevention
类别 | 方法 | 文献算法 | 优势 | 缺陷 | 适应场景 |
---|---|---|---|---|---|
金融 系统 风险 | 金融网络风险 | Amini等人[ | 风险敞口传导测度优于传统方法 | 受限于金融机构关联性、违约资产 | 金融网络的风险敞口与传导 |
Battiston等人[ | 捕捉网络结构的关键特征 | 受限于网络多层结构的复杂度 | 金融机构网络的结构 | ||
大数据分析 | Sarlin[ | 大数据分析优于传统计量方法 | 限于实验、推文大数据规模 | 系统风险大数据分析 | |
Cerchiello等人[ | 增强丰富了传统数据 | 限于数据质量、时效性、融合性 | 系统风险的数据问题 | ||
Nyman等人[ | 情绪分析预测系统 风险 | 限于用词向量空间推文新闻数据 | 金融市场的情绪分析 | ||
金融稳定性 | Duttagupta等人[ | 风险预警优于传统计量模型 | 受限于宏观指标数据、决策树集成 | 适于金融稳定的决策树 | |
Fan等人[ | 建立稳定稀疏投资 组合 | 受限于数据选择、规模、结构 | 适于金融稳定的稀疏模型 | ||
Battiston等人[ | 金融稳定的网络方法 | 受限于多学科数据、方法融合 | 适于金融稳定的无监督学习 | ||
风险监管量化 | Kara[ | 系统风险监管的政策依赖、优化网络分析 | 限于监管网络、监管成本、金融创新等 | 风险监管 |
[1] |
CAVALCANTE R C, BRASILEIRO R C, SOUZA V L, et al. Computational intelligence and financial markets: a survey and future directions[J]. Expert Systems with Applications, 2016, 55: 194-211.
DOI URL |
[2] |
DE SPIEGELEER J, MADAN D B, REYNERS S, et al. Machine learning for quantitative finance: fast derivative pricing, hedging and fitting[J]. Quantitative Finance, 2018, 18(10): 1635-1643.
DOI URL |
[3] |
MASHRUR A, LUO W, ZAIDI N A, et al. Machine learning for financial risk management: a survey[J]. IEEE Access, 2020, 8: 203203-203223.
DOI URL |
[4] | HELBING D. Globally networked risks and how to respond[J]. Nature, 2013, 497: 52-59. |
[5] |
KUO K. DeepTriangle: a deep learning approach to loss re-serving[J]. Risks, 2018, 7(3): 1-12.
DOI URL |
[6] |
GIUDICI P, SARLIN P, SPELTA A. The interconnected nature of financial systems: direct and common exposures[J]. Journal of Banking & Finance, 2020, 112: 105149.
DOI URL |
[7] |
SILVA W, KIMURA H, SOBREIRO V A. An analysis of the literature on systemic financial risk: a survey[J]. Journal of Financial Stability, 2017, 28: 91-114.
DOI URL |
[8] | 张立华, 丁建臣. 高阶矩、HCCA模型与银行系统风险前瞻预判[J]. 统计研究, 2016, 33(1): 70-77. |
ZHANG L H, DING J C. Prospective prediction of banking systemic risk with HCCA model[J]. Statistical Research, 2016, 33(1): 70-77. | |
[9] | 张立华, 张顺顺. 系统性风险与系统风险[J]. 中国金融, 2017(8): 95-96. |
ZHANG L H, ZHANG S S. Systematic risk and systemic risk[J]. China Finance, 2017(8): 95-96. | |
[10] | KUBAT M. An introduction to machine learning[M]. Berlin, Heidelberg: Springer, 2017. |
[11] |
GOLDSTEIN M, UCHIDA S. A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[J]. PLoS One, 2016, 11(4): e0152173.
DOI URL |
[12] |
VAN ENGELEN J E, HOOS H H. A survey on semisuper-vised learning[J]. Machine Learning, 2020, 109: 373-440.
DOI URL |
[13] | MONDAL A K. A survey of reinforcement learning techni-ques: strategies, recent development, and future directions[J]. arXiv:2001.06921v2, 2020. |
[14] | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016. |
[15] | GUARASCIO M, MANCO G, RITACCO E. Deep learning[M]// RANGANATHANS, GRIBSKOVM,NAKAI K, eds.eds. Encyclopedia of Bioinformatics and Computational Bio-logy. New York: Elsevier Science Inc., 2019: 634-647. |
[16] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
DOI URL |
[17] | LIM B, ZOHREN S. Time series forecasting with deep learning: a survey[J]. arXiv:2004.13408v2, 2020. |
[18] | LIN W Y, HU Y H, TSAI C F. Machine learning in financial crisis prediction: a survey[J]. IEEE Transactions on Sys-tems, Man, and Cybernetics, Part C, 2012, 42(4): 421-436. |
[19] |
CHEN M Y. Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolution-ary computation approaches[J]. Computers and Mathematics with Applications, 2011, 62 (12): 4514-4524.
DOI URL |
[20] | WEST D. Neural network credit scoring models[J]. Compu-ters & Operations Research, 2000, 27: 1131-1152. |
[21] |
KIM K J, AHN H. A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach[J]. Computers & Operations Research, 2012, 39(8): 1800-1811.
DOI URL |
[22] |
KIM S Y, UPNEJA A. Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models[J]. Economic Modelling, 2014, 36: 354-362.
DOI URL |
[23] |
BARBOZA F, KIMURA H, ALTMAN E. Machine learning models and bankruptcy prediction[J]. Expert Systems with Applications, 2017, 83: 405-417.
DOI URL |
[24] | GHODSELAHI A. A hybrid support vector machine ense-mble model for credit scoring[J]. International Journal of Computer Applications, 2011, 17(5): 1-5. |
[25] | HU L, CHEN J, VAUGHAN J, et al. Supervised machine learning techniques: an overview with applications to ban-king[J]. arXiv:2008.04059v1, 2020. |
[26] |
WANG G, MA J. A hybrid ensemble approach for enterprise credit risk assessment based on support vector machine[J]. Expert Systems with Applications, 2012, 39(5): 5325-5331.
DOI URL |
[27] |
AMPOUNTOLAS A, NDE T N, DATE P, et al. A machine learning approach for micro-credit scoring[J]. Risks, 2021, 9(3): 50.
DOI URL |
[28] | HARDING M, VASCONCELOS G. Managers versus mac-hines: do algorithms replicate human intuition in credit ratings?[J]. arXiv:2202.04218v1, 2022. |
[29] |
LIM M K, SOHNS Y. Cluster-based dynamic scoring model[J]. Expert Systems with Applications, 2007, 32(2): 427-431.
DOI URL |
[30] |
KOU G, PENG Y, WANG G. Evaluation of clustering algori-thms for financial risk analysis using MCDM methods[J]. Information Sciences, 2014, 275: 1-12.
DOI URL |
[31] | SHILLER R J. Market volatility[M]. Cambridge: MIT Press, 1992. |
[32] |
LUONG C, DOKUCHAEV N. Forecasting of realised vola-tility with the random forests algorithm[J]. Journal of Risk and Financial Management, 2018, 11(4): 1-15.
DOI URL |
[33] |
PARK H, KIM N, LEE J. Parametric models and non-parametric machine learning models for predicting option prices: empirical comparison study over KOSPI 200 index options[J]. Expert Systems with Applications, 2014, 41(11): 5227-5237.
DOI URL |
[34] | LUO R, ZHANG W N, XU X J, et al. A neural stochastic volatility model[C]// Proceedings of the 32nd AAAI Con-ference on Artificial Intelligence, the 30th Innovative App-lications of Artificial Intelligence, and the 8th AAAI Sym-posium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 6401-6408. |
[35] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
DOI URL |
[36] | RAMOS-PÉREZ E, ALONSO-GONZÁLEZ P J, NÚEZ-VELÁZQUEZ J J, et al. Forecasting volatility with a stacked model based on a hybridized artificial neural network[J]. arXiv:2006.16383v2, 2020. |
[37] |
GROTH S S, MUNTERMANN J. An intraday market risk management approach based on textual analysis[J]. Decision Support Systems, 2011, 50(4): 680-691.
DOI URL |
[38] |
ANTWEILER W, FRANK M Z. Is all that talk just noise? The information content of Internet stock message boards[J]. The Journal of Finance, 2004, 59(3): 1259-1294.
DOI URL |
[39] |
NIZER P S M, NIEVOLAJ C. Predicting published news effect in the Brazilian stock market[J]. Expert Systems with Applications, 2012, 39(12): 10674-10680.
DOI URL |
[40] | MANELA A, MOREIRA A. News implied volatility and disaster concerns[J]. Journal of Financial Economics, 2017, 23(1): 137-162. |
[41] |
OLIVEIRA N, CORTEZ P, AREAL N. The impact of micro-blogging data for stock market prediction: using Twitter to predict returns, volatility, trading volume and survey senti-ment indices[J]. Expert Systems with Applications, 2017, 73: 125-144.
DOI URL |
[42] |
XU Q, BO Z, JIANG C, et al. Does Google search index really help predicting stock market volatility? Evidence from a modified mixed data sampling model on volatility[J]. Knowledge-Based Systems, 2019, 166: 170-185.
DOI URL |
[43] | XU Y M, COHEN S B. Stock movement prediction from tweets and historical prices[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 1970-1979. |
[44] |
PAPADIMITRIOU T, GOGAS P, ATHANASIOU A F. Fore-casting S&P 500 spikes: an SVM approach[J]. Digital Finance, 2020. DOI: 10.1007/s42521-020-00024-0.
DOI |
[45] |
BAN G Y, KAROUIN E, LIMA E. Machine learning and portfolio optimization[J]. Management Science, 2018, 64(3): 1136-1154.
DOI URL |
[46] | PINELIS M, RUPPERT D. Machine learning portfolio allo-cation[J]. arXiv:2003.00656v2, 2020. |
[47] |
LI B, ZHAO P, HOI S C H, et al. PAMR: passive aggressive mean reversion strategy for portfolio selection[J]. Machine Learning, 2012, 87(2): 221-258.
DOI URL |
[48] | LI B, HOI S C. Online portfolio selection: a survey[J]. ACM Computing Surveys, 2014, 46(3): 1-36. |
[49] | JIANG Z, XU D, LIANG J. A deep reinforcement learning framework for the financial portfolio management problem[J]. arXiv:1706.10059, 2017. |
[50] |
ALMAHDI S, YANGS Y. An adaptive portfolio trading sys-tem: a risk return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown[J]. Expert Systems with Applications, 2017, 87: 267-279.
DOI URL |
[51] |
NGAI E, HU Y, WONG Y H, et al. The application of data mining techniques in financial fraud detection: a classifi-cation framework and an academic review of literature[J]. Decision Support Systems, 2011, 50(3): 559-569.
DOI URL |
[52] |
SAHIN Y, BULKAN S, DUMAN E. A cost-sensitive deci-sion tree approach for fraud detection[J]. Expert Systems with Applications, 2013, 40(15): 5916-5923.
DOI URL |
[53] |
BAHNSEN A C, AOUADA D, STOJANOVIC A, et al. Fea-ture engineering strategies for credit card fraud detection[J]. Expert Systems with Applications, 2016, 51: 134-142.
DOI URL |
[54] |
ABBASI A, ALBRECHT C, VANCE A, et al. MetaFraud: a metalearning framework for detecting financial fraud[J]. MIS Quarterly, 2012, 36(4): 1293-1327.
DOI URL |
[55] |
KUSAYA C, ANALYST R, O'KEEFE J. Insider abuse and fraud prediction for U.S. banks: a comparison of machine lear-ning approaches[J]. SSRN Electronic Journal, 2021. DOI: 10.2139/ssrn.3659757.
DOI |
[56] | LOUGHRAN T, MCDONALD B. Textual analysis in accou-nting and finance: a survey[J]. Journal of Accounting Re-search, 2016, 54(4): 1187-1230. |
[57] |
NIAN K, ZHANG H, TAYAL A, et al. Auto insurance fraud detection using unsupervised spectral ranking for anomaly[J]. The Journal of Finance and Data Science, 2016, 2(1): 58-75.
DOI URL |
[58] | PAPERNOT N, MCDANIEL P, GOODFELLOW I. Trans-ferability in machine learning: from phenomena to black-box attacks using adversarial samples[J]. arXiv:1605.07277, 2016. |
[59] | CHALAPATHY R, CHAWLA S. Deep learning for anomaly detection: a survey[J]. arXiv:1901.03407, 2019. |
[60] |
FIORE U, DE SANTIS A, PERLA F, et al. Using generative adversarial networks for improving classification effective-ness in credit card fraud detection[J]. Information Sciences, 2019, 479: 448-455.
DOI URL |
[61] |
PURDA L, SKILLICORN D. Accounting variables, decep-tion, and a bag of words: assessing the tools of fraud detec-tion[J]. Contemporary Accounting Research, 2015, 32(3): 1193-1223.
DOI URL |
[62] |
HAJEK P, HENRIQUES R. Mining corporate annual reports for intelligent detection of financial statement fraud: a com-parative study of machine learning methods[J]. Knowledge-Based Systems, 2017, 128: 139-152.
DOI URL |
[63] | VERBELEN R, ANTONIO K, CLAESKENS G. Unravelling the predictive power of telematics data in car insurance pricing[J]. Journal of the Royal Statistical Society, 2018, 67(5): 1275-1304. |
[64] | TSAI R Y, HUANG T S. Multiframe image restoration and registration[J]. Advance Computer Visual and Image Pro-cessing, 1984, 1: 317-339. |
[65] | GHAFFAR M, MCKINSTRY A, MAUL T, et al. Data aug-mentation approaches for satellite image super-resolution[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019: 47-54. |
[66] | LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial net-work[C]// Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 105-114. |
[67] |
LI H, ZHENG Q, YAN W, et al. Image super-resolution re-construction for secure data transmission in Internet of things environment[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 6652-6671.
DOI URL |
[68] | LEE R D, CARTER L R. Modeling and forecasting US mor-tality[J]. Journal of the American Statistical Association, 1992, 87(419): 659-671. |
[69] |
MILEVSKY M A, PROMISLOW S D. Mortality derivatives and the option to annuitise[J]. Insurance: Mathematics and Economics, 2001, 29(3): 299-318.
DOI URL |
[70] |
RICHMAN R, WÜTHRICH M V. A neural network exten-sion of the Lee-Carter model to multiple populations[J]. Annals of Actuarial Science, 2021, 15(2): 346-366.
DOI URL |
[71] |
HAINAUT D. A neural-network analyzer for mortality fore-cast[J]. Astin Bulletin, 2018, 48(2): 481-508.
DOI URL |
[72] |
KARTHIKEYAN A, GARG A, VINOD P K, et al. Machine-learning based clinical decision support system for early COVID-19 mortality prediction[J]. Frontiers in Public Health, 2021, 9: 626697.
DOI URL |
[73] | SRIRAM A, MUCKLEY M, SINHA K, et al. COVID-19 deterioration prediction via self-supervised representation learning and multi-image prediction[J]. arXiv:2101.04909, 2021. |
[74] |
GOURDEAU D, POTVIN O, ARCHAMBAULT P, et al. Tracking and predicting COVID-19 radiological trajectory on chest X-rays using deep learning[J]. Scientific Reports, 2022, 12(1): 5616.
DOI URL |
[75] |
BATTISTON S, FARMER J D, FLACHE A. Complexity theory and financial regulation[J]. Science, 2016, 351(6275): 818-819.
DOI URL |
[76] |
HALDANE A, MAY R. Systemic risk in banking ecosystems[J]. Nature, 2011, 469(7330): 351-355.
DOI URL |
[77] | PRASANNA G, HALDANE A, KAPADIA S. Complexity, concentration and contagion[J]. Journal of Monetary Eco-nomics, 2011, 58(5): 453-470. |
[78] |
HU D, ZHAO J L, HUA Z, et al. Network based modeling and analysis of systemic risk in banking systems[J]. MIS Quarterly, 2012, 36(4): 1269-1291.
DOI URL |
[79] |
DIEBOLD F X, YILMAZ K. On the network topology of variance decompositions: measuring the connectedness of financial firms[J]. Journal of Econometrics, 2014, 182(1): 119-134.
DOI URL |
[80] | ACEMOGLU D, OZDAGLAR A, TAHBAZ-SALEHI A. Systemic risk and stability in financial networks[J]. Ame-rican Economic Review, 2015, 105(2): 564-608. |
[81] |
AMINI H, CONT R, MINCA A. Resilience to contagion in financial networks[J]. Mathematical Finance, 2016, 26(2): 329-365.
DOI URL |
[82] |
BLUHM M, KRAHNEN J. Systemic risk in an interconne-cted banking system with endogenous asset markets[J]. Journal of Financial Stability, 2014, 13(1): 75-94.
DOI URL |
[83] |
CHOI D. Heterogeneity and stability: bolster the strong, not the weak[J]. The Review of Financial Studies, 2014, 27(6): 1830-1867.
DOI URL |
[84] |
GIUDICI P, SPELTA A. Graphical network models for inter-national financial flows[J]. Journal of Business & Economic Statistics, 2016, 34(1): 128-138.
DOI URL |
[85] | YU J, ZHAO J. Prediction of systemic risk contagion based on a dynamic complex network model using machine learning algorithm[J]. Complexity, 2020, 2: 1-13. |
[86] |
BETZ F, HAUTSCH N, PELTONEN T A, et al. Systemic risk spillovers in the European banking and sovereign net-work[J]. Journal of Financial Stability, 2016, 25: 206-224.
DOI URL |
[87] | SHEN C W. A Bayesian networks approach to modeling financial risks of e-logistics investments[J]. International Journal of Information Technology & Decision Making, 2017, 8(4): 711-726. |
[88] | BATTISTON S, CALDARELLI G, MAY R M, et al. The price of complexity in financial networks[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2016, 113(36): 10-31. |
[89] |
POLEDNA S, MOLINA-BORBOA J L, MARTÍNEZ-JARAMILLO S, et al. The multi-layer network nature of systemic risk and its implications for the costs of financial crises[J]. Journal of Financial Stability, 2015, 20: 70-81.
DOI URL |
[90] |
GRASSIA M, DE DOMENICO M, MANGIONI G. Machine learning dismantling and early-warning signals of disinte-gration in complex systems[J]. Nature Communications, 2021, 12(1): 5190.
DOI URL |
[91] |
CERCHIELLO P, GIUDICI P. Big data analysis for financial risk management[J]. Journal of Big Data, 2016, 3(1): 18.
DOI URL |
[92] |
SARLIN P. Computational tools for systemic risk identifica-tion and assessment[J]. Intelligent Systems in Accounting, Finance and Management, 2016, 23(1/2): 3-5.
DOI URL |
[93] |
SARLIN P. Macroprudential oversight, risk communication and visualization[J]. Journal of Financial Stability, 2016, 27: 160-179.
DOI URL |
[94] | CERCHIELLO P, GIUDICI P, NICOLA D. Big data models of bank risk contagion[J]. DEM Working Paper Series, 2016: 117. |
[95] | FLOOD M, JAGADISH H V, KYLE A, et al. Using data for systemic financial risk management[C]// Proceedings of the 5th Biennial Conference on Innovative Data Systems Re-search, Asilomar, Jan 9-12, 2011: 144-147. |
[96] | JAGADISH H V, GEHRKE J, LABRINIDIS A, et al. Big data and its technical challenges[J]. Communications of the ACM, 2014, 57(7): 86-94. |
[97] |
YANGS, GUO K, LI J P, et al. Framework formation of financial data classification standard in the era of the big data[J]. Procedia Computer Science, 2014, 30: 88-96.
DOI URL |
[98] | BRAMMERTZ W, MENDELOWITZA I. Limits and oppor-tunities of big data for macro-prudential modeling of fina-ncial systemic risk[C]// Proceedings of the 2014 Interna-tional Workshop on Data Science for Macro-Modeling, Sno-wbird, Jun 22-27, 2014. New York: ACM, 2014: 1-6. |
[99] | NYMAN R, KAPADIA S, TUCKETT D. News and narra-tives in financial systems: exploiting big data for systemic risk assessment[J]. Journal of Economic Dynamics and Control, 2021, 4: 104119. |
[100] | CHIANG J K, CHEN C C. Sentimental analysis on big data- on case of financial document text mining to predict sub-index trend[C]// Proceedings of the 5th International Con-ference on Computer Sciences and Automation Engineering, Sanya, Nov 14-15, 2015. Paris: Atlantis Press, 2016: 423-428. |
[101] |
TSAI M F, WANG C J. On the risk prediction and analysis of soft information in finance reports[J]. European Journal of Operational Research, 2017, 257(1): 243-250.
DOI URL |
[102] | MEYER B, BIKDASH M, DAI X. Fine-grained financial news sentiment analysis[C]// Proceedings of the Southeast Conference 2017, Charlotte, Mar 30-Apr 2, 2017. Piscataway: IEEE, 2017: 1-8. |
[103] | TSAI M F, WANG C J. Risk ranking from financial reports[C]// LNCS 7814: Proceedings of the 35th European Con-ference on IR Research, Moscow, Mar 24-27, 2013. Berlin, Heidelberg: Springer, 2013: 804-807. |
[104] |
DUTTAGUPTA R, CASHIN P. Anatomy of banking crises in developing and emerging market countries[J]. Journal of International Money and Finance, 2011, 30(2): 354-376.
DOI URL |
[105] | MANASSE P, SAVONA R, VEZZOLI M. Danger zones for banking crises in emerging markets[J]. International Journal of Finance & Economics, 2016, 21: 360-381. |
[106] | GABRIELE C. Learning from trees: a mixed approach to building early warning systems for systemic banking crises[J]. European Stability Mechanism Working Paper, 2019: 40. |
[107] |
TANAKA K, KINKYO T, HAMORI S. Random forests-based early warning system for bank failures[J]. Economics Letters, 2016, 148: 118-121.
DOI URL |
[108] |
WARD F. Spotting the danger zone: forecasting financial crises with classification tree ensembles and many predi-ctors[J]. Journal of Applied Econometrics, 2017, 32(2): 359-378.
DOI URL |
[109] | CASABIANCA E J, CATALANO M, FORNI L, et al. An early warning system for banking crises: from regression-based analysis to machine learning techniques[J]. Marco Fanno Working Papers, 2019: 235. |
[110] | BLUWSTEIN K, BUCKMANN M, JOSEPH A, et al. Credit growth, the yield curve and financial crisis prediction: evi-dence from a machine learning approach[J]. ECB Working Paper, 2021: 2614. |
[111] |
ARAKELIAN V, DELLAPORTAS P, SAVONA R, et al. Sovereign risk zones in Europe during and after the debt crisis[J]. Quantitative Finance, 2019, 19(6): 961-980.
DOI URL |
[112] | JOY M, RUSNAK M, SMIDKOVA K, et al. Banking and currency crises: differential diagnostics for developed coun-tries[J]. International Journal of Finance & Economics, 2017, 22(1): 44-67. |
[113] |
BARRY C B. Portfolio analysis under uncertain means, va-riances, and covariances[J]. Journal of Finance, 1974, 29: 515-522.
DOI URL |
[114] | BRODIE J, DAUBECHIES I, MOL C D, et al. Sparse and stable Markowitz portfolios[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30): 12267-12272. |
[115] |
FAN J, ZHANG J, YU K. Vast portfolio selection with gross-exposure constraints[J]. Journal of the American Statistical Association, 2012, 107: 592-606.
DOI URL |
[116] |
EIDENBERGER J, NEUDORFER B, SIGMUND M, et al. What predicts financial (in)stability? A Bayesian approach[J]. Credit and Capital Markets-Kredit und Kapital, 2017, 50(3): 299-336.
DOI URL |
[117] | CHEN R B, CHEN Y C, CHU C H, et al. On the determi-nants of the 2008 financial crisis: a Bayesian approach to the selection of groups and variables[J]. Studies in Nonlinear Dynamics & Econometrics, 2017, 21(5): 20160107. |
[118] |
GUIDOLIN M, HANSEN E, PEDIO M. Cross-asset conta-gion in the financial crisis: a Bayesian time-varying para-meter approach[J]. Journal of Financial Markets, 2019, 45: 83-114.
DOI URL |
[119] | LANG J H, PELTONEN T A, SARLIN P. A framework for early-warning modeling with an application to banks[J]. Euro-pean Stability Mechanism Working, 2018: 40. |
[120] | ALESSI L, BALDUZZI P, SAVONA R. Anatomy of a sove-reign debt crisis: CDS spreads and real-time macroeconomic data[R]. Italy: European Commission-Joint Research Centre, 2019. |
[121] |
HOLOPAINEN M, SARLIN P. Toward robust early-warning models: a horse race, ensembles and model uncertainty[J]. Quantitative Finance, 2017, 17(12): 1933-1963.
DOI URL |
[122] | GLASSERMAN P, YOUNG P. Contagion in financial net-works[J]. Office of Financial Research Working Paper, 2015: 15-21. |
[123] |
MARCUS B, ANDY H, ANNE-CAROLINE H. Comparing minds and machines: implications for financial stability[J]. Oxford Review of Economic Policy, 2021, 37(3): 479-508.
DOI URL |
[124] |
SCHULDENZUCKER S, SEUKEN S, BATTISTON S. De-fault ambiguity: credit default swaps create new systemic risks in financial networks[J]. Management Science, 2020, 66(5): 1981-1998.
DOI URL |
[125] | GALAT G, MOESSNER R. Macro prudential policy: a litera-ture review[J]. Journal of Economic Surveys, 2013, 27(5): 846-878. |
[126] |
KARA G I. Systemic risk, international regulation, and the limits of coordination[J]. Journal of International Economics, 2016, 99(1): 192-222.
DOI URL |
[127] |
POSNER E, WEYL E G. Benefit cost analysis for financial regulation[J]. The American Economic Review, 2013, 103(3): 393-397.
DOI URL |
[128] |
BOSMA J J. Dueling policies: why systemic risk taxation can fail[J]. European Economic Review, 2016, 87(1): 132-147.
DOI URL |
[129] | CLARK E, JOKUNG O. The role of regulatory credibility in effective bank regulation[J]. Journal of Banking & Fin-ance, 2015, 50(1): 506-513. |
[130] |
CAO J, ILLING G. Regulation of systemic liquidity risk[J]. Financial Markets and Portfolio Management, 2010, 24(1): 31-48.
DOI URL |
[131] | NUCERA F, SCHWAAB B, KOOPMAN S J. The informa-tion in systemic risk rankings[J]. Journal of Empirical Fin-ance, 2016, 38: 461-475. |
[132] | 李拉亚. 经济学计算机化研究进展[J]. 经济学动态, 2014(1): 130-137. |
LI L Y. The progress of research on the computerization of economics[J]. Economic Perspectives, 2014(1): 130-137. |
[1] | 武美, 丁怡彤, 赵建立. 改进的增量式动静结合协同过滤方法[J]. 计算机科学与探索, 2022, 16(9): 2089-2095. |
[2] | 刘学文, 王继奎, 杨正国, 李冰, 聂飞平. 密度峰值隶属度优化的半监督Self-Training算法[J]. 计算机科学与探索, 2022, 16(9): 2078-2088. |
[3] | 罗逸轩, 刘建华, 胡任远, 张冬阳, 卜冠南. 融合经验共享Q学习的粒子群优化算法[J]. 计算机科学与探索, 2022, 16(9): 2151-2162. |
[4] | 朱炳宇, 刘朕, 张景祥. 融合Grad-CAM和卷积神经网络的COVID-19检测算法[J]. 计算机科学与探索, 2022, 16(9): 2108-2120. |
[5] | 任宁, 付岩, 吴艳霞, 梁鹏举, 韩希. 深度学习应用于目标检测中失衡问题研究综述[J]. 计算机科学与探索, 2022, 16(9): 1933-1953. |
[6] | 萨日娜, 李艳玲, 林民. 知识图谱推理问答研究综述[J]. 计算机科学与探索, 2022, 16(8): 1727-1741. |
[7] | 谢娟英, 张凯云. XR-MSF-Unet:新冠肺炎肺部CT图像自动分割模型[J]. 计算机科学与探索, 2022, 16(8): 1850-1864. |
[8] | 陈洋, 王士同. 多样性正则化极限学习机的集成方法[J]. 计算机科学与探索, 2022, 16(8): 1819-1928. |
[9] | 杨政, 邓赵红, 罗晓清, 顾鑫, 王士同. 利用ELM-AE和迁移表征学习构建的目标跟踪系统[J]. 计算机科学与探索, 2022, 16(7): 1633-1648. |
[10] | 韩毅, 乔林波, 李东升, 廖湘科. 知识增强型预训练语言模型综述[J]. 计算机科学与探索, 2022, 16(7): 1439-1461. |
[11] | 张壮, 王士同. 不平衡数据的Takagi-Sugeno-Kang模糊分类集成模型[J]. 计算机科学与探索, 2022, 16(6): 1374-1382. |
[12] | 赵家波, 游晓明, 刘升. 结合价格波动策略与动态回溯机制的蚁群算法[J]. 计算机科学与探索, 2022, 16(6): 1390-1404. |
[13] | 谢欣彤, 胡悦阳, 刘譞哲, 赵耀帅, 姜海鸥. 传播用户代表性特征学习的谣言检测方法[J]. 计算机科学与探索, 2022, 16(6): 1334-1342. |
[14] | 刘雅芬, 郑艺峰, 江铃燚, 李国和, 张文杰. 深度半监督学习中伪标签方法综述[J]. 计算机科学与探索, 2022, 16(6): 1279-1290. |
[15] | 董文波, 孙仕亮, 殷敏智. 医学知识推理研究现状与发展[J]. 计算机科学与探索, 2022, 16(6): 1193-1213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||