[1] BASIRI A, LOHAN E S, SILVA P F E, et al. Overview of positioning technologies from fitness-to-purpose point of view[C]//Proceedings of the 2014 International Conference on Localization and GNSS, Helsinki, Jun 24-26, 2014. Piscata-way: IEEE, 2014: 1-7.
[2] BAO J, ZHENG Y, MOKBEL M F. Location-based and preference-aware recommendation using sparse geo-social net-working data[C]//Proceedings of the 20th International Con-ference on Advances in Geographic Information Systems, Redondo Beach, Nov 7-9, 2012. New York: ACM, 2012: 199-208.
[3] SU K H, LI J, FU H B. Smart city and the applications[C]//Proceedings of the 2011 International Conference on Elec-tronics, Communications and Control, Ningbo, Sep 9-11, 2011. Piscataway: IEEE, 2011: 1028-1031.
[4] QURESHI K N, ABDULLAH A H. A survey on intelligent transportation systems[J]. Middle-East Journal of Scientific Research, 2013, 15(5): 629-642.
[5] GIANNOTTI F, NANNI M, PINELLI F, et al. Trajectory pattern mining[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, Aug 12-15, 2007. New York: ACM, 2007: 330-339.
[6] 刘新宇, 谭力铭, 杨春曦, 等. 未知环境下的蚁群-聚类自适应动态路径规划[J]. 计算机科学与探索, 2019, 13(5): 846-857.
LIU X Y, TAN L M, YANG C X, et al. Self-adjustable dyna-mic path planning of unknown environment based on ant colony-clustering algorithm[J]. Journal of Frontiers of Com-puter Science and Technology, 2019, 13(5): 846-857.
[7] MIKOLOV T, KOMBRINK S, BURGET L, et al. Extensions of recurrent neural network language model[C]//Proceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, Prague, May 22-27, 2011. Piscataway: IEEE, 2011: 5528-5531.
[8] 赵婷婷, 孔乐, 韩雅杰, 等. 模型化强化学习研究综述[J]. 计算机科学与探索, 2020, 14(6): 918-927.
ZHAO T T, KONG L, HAN Y J, et al. Review of model-based reinforcement learning[J]. Journal of Frontiers of Com-puter Science and Technology, 2020, 14(6): 918-927.
[9] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80.
[10] YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 32nd AAAI Conference on Artifi-cial Intelligence, the 30th Innovative Applications of Artifi-cial Intelligence, and the 8th AAAI Symposium on Educa-tional Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 7444-7452.
[11] CHAUDHARY A, MITTAL H, ARORA A. Anomaly detec-tion using graph neural networks[C]//Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, Faridabad, Feb 14-16, 2019. Piscataway: IEEE, 2019: 346-350.
[12] WANG F S, LIU P Y. Temporal management of RFID data[C]//Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Aug 30-Sep 2, 2005. New York: ACM, 2005: 1128-1139.
[13] JEFFERY S R, GAROFALAKIS M N, FRANKLIN M J. Adaptive cleaning for RFID data streams[C]//Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Sep 12-15, 2006. New York: ACM, 2006: 163-174.
[14] XU H, DING J, LI P, et al. An improved SMURF scheme for cleaning RFID data[J]. International Journal of Grid and Utility Computing, 2018, 9(2): 170-178.
[15] 刘云恒, 刘耀宗, 张宏. 一种不确定RFID数据流清洗策略[J]. 计算机科学, 2016, 43(S2): 482-485.
LIU Y H, LIU Y Z, ZHANG H. Uncertain RFID data stream cleaning strategy[J]. Computer Science, 2016, 43(S2): 482-485.
[16] BIRANT D, KUT A. ST-DBSCAN: an algorithm for clus-tering spatial-temporal data[J]. Data & Knowledge Enginee-ring, 2007, 60(1): 208-221.
[17] CAI M, WANG S, SHEN X, et al. A scheme for anomalous RFID trajectory detection based on improved clustering algo-rithm under digital-twin-driven[C]//Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Sys-tems: Computing, Networking and Services, Houston, Nov 12-14, 2019. New York: ACM, 2019: 126-134.
[18] ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the 31st AAAI Conference on Artificial Intel-ligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 1655-1661.
[19] QIAO S L, SUN R C, FAN G P, et al. Short-term traffic flow forecast based on parallel long short-term memory neural network[C]//Proceedings of the 2017 8th IEEE International Conference on Software Engineering and Service Sciences, Beijing, Nov 24-26, 2017. Piscataway: IEEE, 2017: 253-257.
[20] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780.
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Com-puters, 2020, 43(5): 755-780.
[21] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convo-lutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018. San Francisco: Morgan Kaufmann, 2018: 3634-3640.
[22] WANG J Y, WU N, ZHAO W X, et al. Empowering A* search algorithms with neural networks for personalized route recom-mendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 539-547.
[23] NANNICINI G, DELLING D, LIBERTI L, et al. Bidirec-tional A* search for time-dependent fast paths[C]//LNCS 5038: Proceedings of the 7th International Conference on Experi-mental Algorithms, Provincetown, May 30-Jun 1, 2008. Berlin, Heidelberg: Springer, 2008: 334-346.
[24] DEMIRYUREK U, BANAEI-KASHANI F, SHAHABI C. A case for time-dependent shortest path computation in spa-tial networks[C]//Proceedings of the 18th SIGSPATIAL Inter-national Conference on Advances in Geographic Information Systems, San Jose, Nov 3-5, 2010. New York: ACM, 2010: 474-477.
[25] LI X J, MA Y D, FENG X W. Self-adaptive autowave pulse-coupled neural network for shortest-path problem[J]. Neuro-computing, 2013, 115: 63-71.
[26] PANOV A I, YAKOVLEV K S, SUVOROV R. Grid path planning with deep reinforcement learning: preliminary results[J]. Procedia Computer Science, 2018, 123: 347-353.
[27] SUDHOLT D, THYSSEN C. Running time analysis of ant colony optimization for shortest path problems[J]. Journal of Discrete Algorithms, 2012, 10: 165-180.
[28] DAUPHIN Y N, FAN A, AULI M, et al. Language model-ing with gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning, Syd-ney, Aug 6-11, 2017. New York: ACM, 2017: 933-941.
[29] MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNS[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-27, 2017. Piscataway: IEEE, 2017: 5115-5124.
|