计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (10): 2343-2357.DOI: 10.3778/j.issn.1673-9418.2307053
彭鐄,曾维新,周杰,唐九阳,赵翔
出版日期:
2023-10-01
发布日期:
2023-10-01
PENG Huang, ZENG Weixin, ZHOU Jie, TANG Jiuyang, ZHAO Xiang
Online:
2023-10-01
Published:
2023-10-01
摘要: 实体对齐是知识融合的一个重要步骤,其目的在于识别不同知识图谱中的等价实体。为准确判断出对等的实体,现有方法首先进行表示学习,将实体映射到低维向量空间中,接着通过向量间的相似度推断实体的等价性。而近期实体对齐的相关工作也大都聚焦于表示学习方法的改进上。为了能够更好地理解这些模型的机理,挖掘有价值的设计思路,并为后续的优化改进工作提供参考,对实体对齐表示学习方法进行了研究综述。首先基于现有方法,提出了一个通用的表示学习框架,并用该框架对几个具有代表性的工作进行了归纳概括以及分析解构。接着通过实验对这些工作进行了对比分析,并对框架中各个模块的常见方法进行了比较。根据实验结果,总结了各种方法的优劣,并提出了使用建议。最后初步讨论了大规模语言模型与知识图谱对齐融合的可行性,并分析了存在的问题以及潜在的挑战。
彭鐄, 曾维新, 周杰, 唐九阳, 赵翔. 基于图神经网络的实体对齐表示学习方法比较研究[J]. 计算机科学与探索, 2023, 17(10): 2343-2357.
PENG Huang, ZENG Weixin, ZHOU Jie, TANG Jiuyang, ZHAO Xiang. Contrast Research of Representation Learning in Entity Alignment Based on Graph Neural Network[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2343-2357.
[1] EHRLINGER L, W?? W. Towards a definition of knowledge graphs[C]//Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems, Leipzig, Sep 12-15, 2016, 1695: 1-4. [2] WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 950-958. [3] CHEN C, ZHANG M, MA W Z, et al. Jointly non-sampling learning for knowledge graph enhanced recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 189-198. [4] HU S, ZOU L, YU J X, et al. Answering natural language questions by subgraph matching over knowledge graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 30(5): 824-837. [5] CUI W, XIAO Y, WANG H, et al. KBQA: learning question answering over QA corpora and knowledge bases[J]. Proceedings of the VLDB Endowment, 2016, 10(5): 565-576. [6] PUJARA J, MIAO H, GETOOR L, et al. Knowledge graph identification[C]//Proceedings of the 12th International Semantic Web Conference, Sydney, Oct 21-25, 2013. Berlin, Heidelberg: Springer, 2013: 542-557. [7] 赵晓娟, 贾焰, 李爱平,等. 多源知识融合技术研究综述[J]. 云南大学学报(自然科学版), 2020, 42(3): 459-473. ZHAO X J, JIA Y, LI A P, et al. A survey of the research on multi-source knowledge fusion technology[J]. Journal of Yunnan University (Natural Sciences Edition), 2020, 42(3): 459-473. [8] SUN Z, ZHANG Q, HU W, et al. A benchmarking study of embedding-based entity alignment for knowledge graphs[J]. Proceedings of the VLDB Endowment, 2020, 13(12): 2326-2340. [9] ZENG W X, ZHAO X, TAN Z, et al. Matching knowledge graphs in entity embedding spaces: an experimental study[J]. IEEE Transactions on Knowledge and Data Engineering, 2023. DOI: 10.1109/TKDE.2023.3272584. [10] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems 26, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795. [11] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Quebec City, Jul 27-31, 2014. Palo Alto: AAAI, 2014: 1112-1119. [12] SUN Z, HU W, ZHANG Q, et al. Bootstrapping entity alignment with knowledge graph embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018. San Francisco: Margan Kaufmann, 2018: 4396-4402. [13] CHEN M H, TIAN Y T, YANG M H, et al. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017. San Francisco: Margan Kaufmann, 2017: 1511-1517. [14] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-14. [15] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 1263-1272. [16] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on Semantic Web, Heraklion, Jun 3-7, 2018. Cham: Springer, 2018: 593-607. [17] ZHU Q N, ZHOU X F, WU J, et al. Neighborhood-aware attentional representation for multilingual knowledge graphs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. San Francisco: Margan Kaufmann, 2019: 1943-1949. [18] YANG H W, ZOU Y Y, SHI P, et al. Aligning cross-lingual entities with multi-aspect information[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4431-4441. [19] WU Y T, LIU X, FENG Y S, et al. Relation-aware entity alignment for heterogeneous knowledge graphs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. San Francisco: Margan Kaufmann, 2019: 5278-5284. [20] CAO Y, LIU Z, LI C, et al. Multi-channel graph neural network for entity alignment[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 1452-1461. [21] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018: 1-12. [22] WANG Z C, LV Q S, LAN X H, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 349-357. [23] XU K, WANG L, YU M, et al. Cross-lingual knowledge graph alignment via graph matching neural network[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 3156-3161. [24] SUN Z Q, WANG C M, HU W, et al. Knowledge graph alignment network with gated multi-hop neighborhood aggregation[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Palo Alto: AAAI, 2020: 222-229. [25] MAO X, WANG W T, XU H M, et al. MRAEA: an efficient and robust entity alignment approach for cross-lingual knowledge graph[C]//Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, Feb 3-7, 2020. New York: ACM, 2020: 420-428. [26] MAO X, WANG W T, XU H M, et al. Relational reflection entity alignment[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 1095-1104. [27] CAI W, MA W, ZHAN J, et al. Entity alignment with reliable path reasoning and relation-aware heterogeneous graph transformer[C]//Proceedings of the 31st International Joint Conferences on Artificial Intelligence Organization, Vienna, Jul 23-29, 2022. Messe Wien: IJCAI, 2022: 1930-1937. [28] WU Y T, LIU X, FENG Y S, et al. Neighborhood matching network for entity alignment[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 6477-6487. [29] ZHU R, MA M, WANG P. RAGA: relation-aware graph attention networks for global entity alignment[C]//Proceedings of the 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining, May 11-14, 2021. Cham: Springer, 2021: 501-513. [30] LIU Z Y, CAO Y X, PAN L M, et al. Exploring and evaluating attributes, values, and structures for entity alignment[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 6355-6364. [31] MAO X, WANG W T, WU Y B, et al. Are negative samples necessary in entity alignment? An approach with high performance, scalability and robustness[C]//Proceedings of the 30th ACM International Conference on Information & Know-ledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 1263-1273. [32] MAO X, WANG W T, WU Y B, et al. Boosting the speed of entity alignment 10×: dual attention matching network with normalized hard sample mining[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 821-832. [33] ZHONG Z, ZHANG M, FAN J, et al. Semantics driven embedding learning for effective entity alignment[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering, Kuala Lumpur, May 9-12, 2022. Piscataway: IEEE, 2022: 2127-2140. [34] SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Highway networks[J]. arXiv:1505.00387, 2015. [35] SUN Y F, CHENG C M, ZHANG Y H, et al. Circle loss: a unified perspective of pair similarity optimization[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 6398-6407. [36] KOTNIS B, NASTASE V. Analysis of the impact of negative sampling on link prediction in knowledge graphs[J]. arXiv:1708.06816, 2017. [37] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. [38] SUN Z, HU W, LI C. Cross-lingual entity alignment via joint attribute-preserving embedding[C]//Proceedings of the 16th International Semantic Web Conference, Vienna, Oct 21-25, 2017. Cham: Springer, 2017: 628-644. [39] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1532-1543. [40] LI Y J, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[C]//Proceedings of the 4th International Conference on Learning Representations, San Juan, May 2-4, 2016: 1-20. [41] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186. [42] HAMILTON W L, YING Z T, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 1024-1034. [43] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[C]//Proceedings of the 4th International Conference on Learning Representations, San Juan, May 2-4, 2016: 1-14. [44] GRILL J B, STRUB F, ALTCHé F, et al. Bootstrap your own latent-a new approach to self-supervised learning[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 21271-21284. [45] CHEN X L, HE K M. Exploring simple siamese representation learning[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 15750-15758. [46] HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on Image-Net classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1026-1034. [47] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015. Cambridge: MIT Press, 2015: 448-456. [48] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1724-1734. [49] ZENG K S, DONG Z H, HOU L, et al. Interactive contrastive learning for self-supervised entity alignment[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, Oct 17-21, 2022. New York: ACM, 2022: 2465-2475. [50] LIU X, HONG H, WANG X, et al. SelfKG: self-supervised entity alignment in knowledge graphs[C]//Proceedings of the ACM Web Conference 2022, Lyon, Apr 25-29, 2022. New York: ACM, 2022: 860-870. [51] WANG C G, LIU X, SONG D. Language models are open knowledge graphs[J]. arXiv:2010.11967, 2020. [52] PETRONI F, ROCKT?SCHEL T, RIEDEL S, et al. Language models as knowledge bases?[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 2463-2473. [53] ZHONG Z X, FRIEDMAN D, CHEN D Q. Factual probing is [MASK]: learning vs. learning to recall[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Jun 6-11, 2021. Stroudsburg: ACL, 2021: 5017-5033. |
[1] | 陈娜, 黄金诚, 李平. 结合对比学习的图神经网络防御方法[J]. 计算机科学与探索, 2023, 17(8): 1949-1960. |
[2] | 延照耀, 丁苍峰, 马乐荣, 曹璐, 游浩. 面向图神经网络的知识图谱嵌入研究进展[J]. 计算机科学与探索, 2023, 17(8): 1793-1813. |
[3] | 邬锦琛, 杨兴耀, 于炯, 李梓杨, 黄擅杭, 孙鑫杰. 双通道异构图神经网络序列推荐算法[J]. 计算机科学与探索, 2023, 17(6): 1473-1486. |
[4] | 王雪岑, 张昱, 赵长宽, 陈默, 于戈. 采用二分网络表示学习的教学交互评价方法[J]. 计算机科学与探索, 2023, 17(6): 1463-1472. |
[5] | 韩虎, 郝俊, 张千锟, 孟甜甜. 知识增强的交互注意力方面级情感分析模型[J]. 计算机科学与探索, 2023, 17(3): 709-718. |
[6] | 马力, 姚伟凡. 结合关系路径与有向子图推理的链接预测方法[J]. 计算机科学与探索, 2023, 17(2): 478-488. |
[7] | 富坤, 禚佳明, 郭云朋, 李佳宁, 刘琪. 自适应融合邻域聚合和邻域交互的图卷积网络[J]. 计算机科学与探索, 2023, 17(2): 453-466. |
[8] | 许鑫冉, 王腾宇, 鲁才. 图神经网络在知识图谱构建与应用中的研究进展[J]. 计算机科学与探索, 2023, 17(10): 2278-2299. |
[9] | 孙水发, 李小龙, 李伟生, 雷大江, 李思慧, 杨柳, 吴义熔. 图神经网络应用于知识图谱推理的研究综述[J]. 计算机科学与探索, 2023, 17(1): 27-52. |
[10] | 马涪元, 王英, 李丽娜, 汪洪吉. 融合结构和特征的图层次化池化模型[J]. 计算机科学与探索, 2023, 17(1): 179-186. |
[11] | 于慧琳, 陈炜, 王琪, 高建伟, 万怀宇. 使用子图推理实现知识图谱关系预测[J]. 计算机科学与探索, 2022, 16(8): 1800-1808. |
[12] | 张雁操, 赵宇海, 史岚. 融合图注意力的多特征链接预测算法[J]. 计算机科学与探索, 2022, 16(5): 1096-1106. |
[13] | 夏光兵, 李瑞轩, 辜希武, 刘伟. 融合多源信息的知识表示学习[J]. 计算机科学与探索, 2022, 16(3): 591-597. |
[14] | 吴静, 谢辉, 姜火文. 图神经网络推荐系统综述[J]. 计算机科学与探索, 2022, 16(10): 2249-2263. |
[15] | 吴正洋, 汤庸, 刘海. 个性化学习推荐研究综述[J]. 计算机科学与探索, 2022, 16(1): 21-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||