[1] VON LUXBURG U. A tutorial on spectral clustering[J]. Sta-tistics and Computing, 2007: 395-416.
[2] MACQUEEN J B. Some methods for classification and anal-ysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Proba-bility, Berkeley, Jun 21-Jul 18, 1965 and Dec 27, 1965-Jan 7, 1966. Berkeley: University of California Press, 1967: 281-297.
[3] JORDAN M. Pattern recognition and machine learning[M]. Berlin, Heidelberg: Springer, 2006.
[4] JIANG Z X, ZHENG Y, TAN H C, et al. Variational deep embedding: an unsupervised generative approach to cluste-ring[C]//Proceedings of the 26th International Joint Confe-rence on Artificial Intelligence, Melbourne, Aug 19-25, 2017. New York: ACM, 2017: 1965-1972.
[5] DILOKTHANAKUL N,MEDIANO P A M, GARNELO M,et al. Deep unsupervised clustering with gaussian mixture variational autoencoders[C]//Proceedings of the 2017 Inter-national Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-12.
[6] SHAHAM U, STANTON K P, LI H, et al. SpectralNet: spec-tral clustering using deep neural networks[C]//Proceedings of the 6th International Conference on Learning Representa-tions,Vancouver, Apr 30-May 3, 2018: 1-21.
[7] YANG B, FU X, SIDIROPOULOS N D, et al.Towards K-means-friendly spaces: simultaneous deep learning and clus-tering[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 3861-3870.
[8] XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 478-487.
[9] ZHANG D J, SUN Y F, ERIKSSON B, et al. Deep unsuper-vised clustering using mixture of autoencoders[J]. arXiv:1712.07788, 2017.
[10] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013.
[11] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2672-2680.
[12] MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[J]. arXiv:1511.05644, 2016.
[13] YANG L X, CUEUNG N M, LI J Y, et al. Deep clustering by Gaussian mixture variational autoencoders with graph embedding[C]//Proceedings of the 2019 IEEE/CVF Interna-tional Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6439-6448.
[14] KINGMA D P, SALIMANS T, JOZEFOWICZ R, et al. Imp-roved variational inference with inverse autoregressive flow[C]//Proceedings of the 30th Conference on Neural Infor-mation Processing Systems, Dec 5-10, 2016. Red Hook: Cur-ran Associates, 2016: 4743-4751.
[15] GUO C S, ZHOU J L, CHEN H H, et al. Variational auto-encoder with optimizing Gaussian mixture model priors[J]. IEEE Access, 2020: 43992-44005.
[16] LIU G J, LIU Y, GUO M Z, et al. Variational inference with Gaussian mixture model and householder flow[J]. Neural Networks, 2019: 43-55.
[17] OPOCHINSKY Y, CHAZAN S E, GANNOT S, et al. K-autoencoders deep clustering[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 4037-4041.
[18] CHOI K S, SHIN J S, LEE J J, et al. Gradient-based lea-rning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[19] LEWIS D D, YANG Y M, ROSE T G, et al. RCV1: a new benchmark collection for text categorization research[J]. Jou-rnal of Machine Learning Research, 2004, 5: 361-397.
[20] STISEN A, BLUNCK H, BHATTACHARYA S, et al. Smart devices are different: assessing and mitigating mobile sen-sing heterogeneities for activity recognition[C]//Proceedings of the 13th ACM Conference on Embedded Networked Sen-sor Systems, Seoul, Nov 1-4, 2015. New York: ACM, 2015: 127-140.
[21] KINGMA D P, BA J L. Adam: a method for stochastic opti-mization[C]//Proceedings of the 3rd International Conference on Learning Representation, San Diego, May 7-9, 2015: 1-15.
[22] KUHN H W. The Hungarian method for the assignment pro-blem[J]. Naval Research Logistics Quarterly, 1955, 2(1): 83-97.
[23] MAATEN L V D, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |