[1] JIN S, ZENG X, XIA F, et al. Application of deep learning methods in biological networks[J]. Briefings in Bioinforma-tics, 2021, 22(2): 1902-1917.
[2] CHUNAEV P. Community detection in node-attributed social networks: a survey[J]. Computer Science Review, 2020, 37: 100286.
[3] WU L, ZHANG Q, CHEN C H, et al. Deep learning techni-ques for community detection in social networks[J]. IEEE Access, 2020, 8: 96016-96026.
[4] NEWMAN M E J, GIRVAN M. Finding and evaluating com-munity structure in networks[J]. Physical Review E, 2004, 69(2): 026113.
[5] RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76(3): 036106.
[6] SILVA T C, ZHAO L. Stochastic competitive learning in com-plex networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(3): 385-398.
[7] SHAO J, HAN Z, YANG Q, et al. Community detection ba-sed on distance dynamics[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Aug 10-13, 2015. New York: ACM, 2015: 1075-1084.
[8] ZHANG T, XIONG Y, ZHANG J, et al. CommDGI: commu-nity detection oriented deep graph infomax[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Galway, Oct 19-23, 2020. New York: ACM, 2020: 1843-1852.
[9] XIE Y, WANG X, JIANG D, et al. High-performance com-munity detection in social networks using a deep transitive autoencoder[J]. Information Sciences, 2019, 493: 75-90.
[10] JIA Y T, ZHANG Q Q, ZHANG W N, et al. Community-GAN: community detection with generative adversarial nets[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 784-794.
[11] LIU D, BAI H Y, LI H J, et al. Semi-supervised community detection using label propagation[J]. International Journal of Modern Physics B, 2014, 28(29): 1450208.
[12] ZHANG Z Y, SUN K D, WANG S Q. Enhanced commu-nity structure detection in complex networks with partial back-ground information[J]. Scientific Reports, 2013, 3(1): 1-7.
[13] ZHANG Z Y. Community structure detection in complex net-works with partial background information[J]. Europhysics Letters, 2013, 101(4): 48005.
[14] HUA Z, YANG Y, QIU H. Node influence-based label pro-pagation algorithm for semi-supervised learning[J]. Neural Computing and Applications, 2021, 33(7): 2753-2768.
[15] LIU D, LI Q, RU Y, et al. The network representation lear-ning algorithm based on semi-supervised random walk[J]. IEEE Access, 2020, 8: 222956-222965.
[16] FAN L, XU S, LIU D, et al. Semi-supervised community detection based on distance dynamics[J]. IEEE Access, 2018, 6: 37261-37271.
[17] LU H, SANG X, ZHAO Q, et al. Community detection al-gorithm based on nonnegative matrix factorization and pair-wise constraints[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 545: 123491.
[18] VERRI F A N, URIO P R, ZHAO L. Network unfolding map by vertex-edge dynamics modeling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 29(2): 405-418.
[19] QUILES M G, ZHAO L, ALONSO R L, et al. Particle com-petition for complex network community detection[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2008, 18(3): 033107.
[20] 王本钰, 顾益军, 彭舒凡, 等. 融合动态距离和随机竞争学习的社区发现算法[J]. 计算机科学, 2022, 49(5): 170-178.
WANG B Y, GU Y J, PENG S F, et al. Community detec-tion algorithm based on dynamic distance and stochastic com-petitive learning[J]. Computer Science, 2022, 49(5): 170-178.
[21] SILVA T C, ZHAO L. Detecting and preventing error propa-gation via competitive learning[J]. Neural networks, 2013, 41: 70-84.
[22] LI W, YIN D, YUAN D, et al. Particle propagation model for dynamic node classification[J]. IEEE Access, 2020, 8: 140205-140215.
[23] VERRI F A N, URIO P R, ZHAO L. Advantages of edge-centric collective dynamics in machine learning tasks[J]. Jour-nal of Applied Nonlinear Dynamics, 2018, 7(3): 269-285.
[24] RODRIGUES R D, ZHAO L, ZHENG Q, et al. Structural outlier detection: a tourist walk approach[C]//Proceedings of the 2017 13th International Conference on Natural Compu-tation, Fuzzy Systems and Knowledge Discovery, Guilin, Jul 29-31, 2017. Piscataway: IEEE, 2017: 382-387.
[25] GAO X, ZHENG Q, VERRI F A N, et al. Particle compe-tition for multilayer network community detection[C]//Pro-ceedings of the 2019 11th International Conference on Ma-chine Learning and Computing, Zhuhai, Feb 22-24, 2019. New York: ACM, 2019: 75-80.
[26] LI W, GU Y, YIN D, et al. Research on the community num-ber evolution model of public opinion based on stochastic competitive learning[J]. IEEE Access, 2020, 8: 46267-46277.
[27] PASSERINI J A R, BREVE F. Complex network construc-tion for interactive image segmentation using particle com-petition and cooperation: a new approach[C]//LNCS 12249: Proceedings of the 20th International Conference on Com-putational Science and Its Applications, Cagliari, Jul 1-4, 2020. Cham: Springer, 2020: 935-950.
[28] LUSSEAU D, SCHNEIDER K, BOISSEAU O J, et al. The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations[J]. Behavioral Ecology and Sociobiology, 2003, 54(4): 396-405.
[29] GIRBAN M, NEWMAN M E J. Community structure in so-cial and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826.
[30] ADAMIC L A, GLANCE N. The political blogosphere and the 2004 US election: divided they blog[C]//Proceedings of the 3rd International Workshop on Link Discovery, Chicago, Aug 21- 25, 2005. New York: ACM, 2005: 36-43.
[31] YANG J, LESKOVEC J. Defining and evaluating network communities based on ground-truth[J]. Knowledge and In-formation Systems, 2015, 42(1): 181-213.
[32] LANCICHINETTI A, FORTUNATO S, RADICCHI F. Bench-mark graphs for testing community detection algorithms[J]. Physical Review E, 2008, 78(4): 046110.
[33] ZHOU K, MARTIN A, PAN Q, et al. SELP: semi-supervised evidential label propagation algorithm for graph data clus-tering[J]. International Journal of Approximate Reasoning, 2018, 92: 139-154.
[34] LIU D, LIU X, WANG W, et al. Semi-supervised community detection based on discrete potential theory[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 416: 173-182.
[35] ROSVALL M, BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Procee-dings of the National Academy of Sciences, 2008, 105(4): 1118-1123.
[36] CLAUSET A, NEWMAN M E J, MOORE C. Finding com-munity structure in very large networks[J]. Physical Review E, 2004, 70(6): 066111.
[37] PONS P, LATAPY M. Computing communities in large net-works using random walks[C]//Proceedings of the 2005 In-ternational Symposium on Computer and Information Sciences, Istanbul, Oct 26-28, 2005. Berlin: Springer, 2005: 284-293.
[38] WHITLEY D, STARKWEATHER T, BOGART C. Genetic algorithms and neural networks: optimizing connections and connectivity[J]. Parallel Computing, 1990, 14(3): 347-361. |