[1] 王娟, 赵建勇, 童龙. 老年2型糖尿病患者并发周围神经病变的影响因素分析[J]. 中国慢性病预防与控制, 2019, 27(1): 52-54.
WANG J, ZHAO J Y, TONG L. Analysis of influencing factors of peripheral neuropathy in elderly patients with type 2 diabetes[J]. Chinese Prevention and Control of Chronic Diseases, 2019, 27(1): 52-54.
[2] 赖小波, 许茂盛, 徐小媚. 基于多模型融合和区域迭代生长的视网膜血管自动分割[J]. 电子学报, 2019, 47(12): 2611-2621.
LAI X B, XU M S, XU X M. Automatic segmentation of retinal blood vessels based on multi-model fusion and regio-nal iterative growth[J]. Chinese Journal of Electronics, 2019, 47(12): 2611-2621.
[3] SAROJ S K, KUMAR R, SINGH N P. Fréchet PDF based matched filter approach for retinal blood vessels segmenta-tion[J]. Computer Methods and Programs in Biomedicine, 2020, 194: 105490.
[4] KARN P K, BISWAL B, SAMANTARAY S R. Robust retinal blood vessel segmentation using hybrid active contour model[J]. IET Image Processing, 2019, 13(3): 440-450.
[5] 朱承璋, 崔锦恺, 邹北骥, 等. 基于多特征融合和随机森林的视网膜血管分割[J]. 计算机辅助设计与图形学学报, 2017, 29(4): 584-592.
ZHU C Z, CUI J K, ZOU B J, et al. Retinal vessel segmen-tation based on multi-feature fusion and random forest[J]. Journal of Computer Aided Design and Graphics, 2017, 29(4): 584-592.
[6] WU H S, WANG W, ZHONG J F, et al. SCS-Net: a scale and context sensitive network for retinal vessel segmenta-tion[J]. Medical Image Analysis, 2021, 70: 102025.
[7] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651.
[8] RONNEBERGE O, FISCHER P, BROX T, et al. U-Net: convolutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Con-ference on Medical Image Computing and Computer Assis-ted Interventions, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[9] HUANG G, LIU Z, LAURENS V D M, et al. Densely con-nected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recogni-tion, Honolulu, Jul 21-26, 2017. Washington: IEEE Com-puter Society, 2017: 2261-2269.
[10] JéGOU S, DROZDZAL M, VAZQUEZ D, et al. The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 11-19.
[11] LIANG L, LAN Z, SHENG X, et al. Segmentation of retinal vessels by fusing contour information and conditional gene-rative adversarial[J]. Journal of Biomedical Engineering, 2021, 38(2): 276-285.
[12] HE J, JIANG D. Fundus image segmentation based on im-proved generative adversarial network for retinal vessel an-alysis[C]//Proceedings of the 3rd International Conference on Artificial Intelligence and Big Data, Chengdu, May 28-31, 2020. Washington: IEEE Computer Society, 2017: 28-31.
[13] KAMRAN S A, HOSSAIN K F, TAVAKKOLI A, et al. RV-GAN: retinal vessel segmentation from fundus images using multi-scale generative adversarial networks[J]. arXiv:2101.00535, 2021.
[14] ZHOU Y K, CHEN Z L, SHEN H L, et al. A refined equili-brium generative adversarial network for retinal vessel seg-mentation[J]. Neurocomputing, 2021, 437: 118-130.
[15] MOU L, CHEN L, CHENG J, et al. Dense dilated network with probability regularized walk for vessel detection[J]. IEEE Transactions on Medical Imaging, 2019, 39(5): 1392-1403.
[16] SAMUEL P M, VEERAMALAI T. VSSC Net: vessel specific skip chain convolutional network for blood vessel segmen-tation[J]. Computer Methods and Programs in Biomedicine, 2021, 198: 105769.
[17] KHAN T M, NAQVI S S, ARSALAN M,et al. Exploiting residual edge information in deep fully convolutional neural networks for retinal vessel segmentation[C]//Proceedings of the 2020 IEEE Conference on International Joint Conference on Neural Networks, Glasgow, Jul 19-24, 2020. Piscataway:IEEE, 2020: 1-8.
[18] 宋姝洁, 崔振超, 陈丽萍, 等. 多特征融合神经网络的眼底血管分割算法[J]. 计算机科学与探索, 2021, 15(12): 2401-2412.
SONG S J, CUI Z C, CHEN L P, et al. Fundus vessel seg-mentation algorithm based on multi-feature fusion neural network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2401-2412.
[19] ZHUANG J. LadderNet: multi-path networks based on U-Net for medical image segmentation[J]. arXiv:1810.07810, 2018.
[20] WANG B, QIU S, HE H G. Dual encoding U-net for retinal vessel segmentation[C]//LNCS 11764: Proceedings of the 2019 International Conference on Medical Image Computing and Computer Assisted Intervention, Shenzhen, Oct 13-17, 2019. Cham: Springer, 2019: 84-92.
[21] FANG L L, ZHANG L R, YAO Y B. Retina blood vessels segmentation based on the combination of the supervised and unsupervised methods[J]. Multidimensional Systems and Signal Processing, 2021, 32(4): 1123-1139.
[22] DING X, PENG Y X, SHEN C M, et al. CAB U-Net: an end-to-end category attention boosting algorithm for seg-mentation[J]. Computerized Medical Imaging and Graphics, 2020, 84(5): 101764.
[23] JIN Q, MENG Z, PHAM T D, et al. DUNet: a deformable network for retinal vessel segmentation[J]. Knowledge-Based Systems, 2019, 178: 149-162.
[24] YANG D, LIU G R, REN M C, et al. A multi-scale feature fusion method based on U-net for retinal vessel segmenta-tion[J]. Entropy, 2020, 22(8): 811.
[25] ATLI ?, GEDIK O S. Sine-Net: a fully convolutional deep learning architecture for retinal blood vessel segmentation[J]. Engineering Science and Technology, 2021, 24(2): 271-283.
[26] SU X, BAI M. Stochastic gradient boosting frequency-severity model of insurance claims[J]. PLoS One, 2020, 15(8): e0238000.
[27] DAI X, LEI Y, ZHANG Y, et al. Automatic multi-catheter detection using deeply supervised convolutional neural net-work in MRI-guided HDR prostate brachytherapy[J]. Medi-cal Physics, 2020, 47(9): 4115-4124.
[28] QU Z, CAO C, LIU L, et al. A deeply supervised convolu-tional neural network for pavement crack detection with multiscale feature fusion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4890-4899.
[29] LUO Y, LU J H, JIANG X L, et al. Learning from archi-tectural redundancy: enhanced deep supervision in deep multi-path encoder-decoder networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4271-4284.
[30] LIU Y, CHENG M M, ZHANG X Y, et al. DNA: deeply supervised nonlinear aggregation for salient object detec-tion[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 6131-6142.
[31] ZHANG Z L, ZHANG X Y, PENG C, et al. ExFuse: en-hancing feature fusion for semantic segmentation[C]//LNCS 11214: Proceedings of the 15th IEEE European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 273-288.
[32] 顾佳, 方志军, 田方正. 全局特征及多层次特征聚合的冠脉分割算法[J]. 计算机科学与探索, 2021, 15(5): 958-970.
GU J, FANG Z J, TIAN F Z. Global feature and multi-level feature aggregation segmentation algorithm for coronary[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 958-970.
[33] 赵小强, 徐慧萍. 分级特征融合的图像语义分割[J]. 计算机科学与探索, 2021, 15(5): 949-957.
ZHAO X Q, XU H P. Image semantic segmentation method with hierarchical feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 949-957.
[34] YANG J Z, LOU C H, FU J, et al. Vessel segmentation using multiscale vessel enhancement and a region based level set model[J]. Computerized Medical Imaging and Graphics, 2020, 85: 101783.
[35] MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully con-volutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Con-ference on 3D Vision, Stanford, Oct 25-28, 2016. Washing-ton: IEEE Computer Society, 2016: 565-571. |