[1] TAGHANNKI S A,ABHISHEK K, COHEN J P, et al. Deep semantic segmentation of natural and medical images: a review[J]. Artificial Intelligence Review, 2021(1): 1-42.
[2] YAN J, SCHWARTZ L H, ZHAO B. Semiautomatic segmen-tation of liver metastases on volumetric CT images[J]. Medical Physics, 2015, 42(11): 6283-6293.
[3] LONG J, SHELHAMER E, DARRELL T. Fully convol-utional networks for semantic segmentation[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651.
[4] RONNEBERGER O, FISCHER P, BROX T, et al. U-NET: convolutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 2015 International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[5] LIU Z, SONG Y Q, SHENG V S, et al. Liver CT sequence segmentation based with improved U-Net and graph cut[J]. Expert Systems with Applications, 2019, 126: 54-63.
[6] 张泽林, 李宝明, 徐军. 基于条件生成对抗网络的三维肝脏及肿瘤区域自动分割[J]. 生物医学工程学杂志, 2021, 38(1): 80-88.
ZHANG Z L, LI B M, XU J. Automatic three-dimensional segmentation of liver and tumors regions based on cond-itional generative adversarial networks[J]. Journal of Bio-medical Engineering, 2021, 38(1): 80-88.
[7] WANG J, LV P, WANG H, et al. SAR-U-Net: squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver CT segmentation[J]. arXiv: 2103.06419, 2021.
[8] LU F, WU F, HU P, et al. Automatic 3D liver location and segmentation via convolutional neural network and graph cut[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(2): 171-182.
[9] LEI T, ZHOU W Z, ZHANG Y X, et al. Lightweight V-Net for liver segmentation[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 1379-1383.
[10] ZHANG C Y, AI D, FENG C, et al. Dial/hybrid cascade 3DResUNet for liver and tumor segmentation[C]//Proce-edings of the 4th International Conference on Digital Signal Processing, Chengdu, Jun 19-21, 2020. New York: ACM, 2020: 92-96.
[11] LIU T, LIU J, MA Y, et al. Spatial feature fusion convo-lutional network for liver and liver tumor segmentation from CT images[J]. Medical Physics, 2020, 48(1): 264-272.
[12] CHEN X Y, ZHANG R, YAN P K. Feature fusion encoder decoder network for automatic liver lesion segmentation[C]//Proceedings of the 16th IEEE International Sympo-sium on Biomedical Imaging, Venice, Apr 8-11, 2019. Pis-cataway: IEEE, 2019: 430-433.
[13] FENG S, ZHAO H, SHI F, et al. CPFNet: context pyramid fusion network for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3008-3018.
[14] XU K, BA J, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[C]//Proce-edings of the 32nd International Conference on Intern-ational Conference on Machine Learning, Lille France, Jul 6-11, 2015: 2048-2057.
[15] 刘云鹏, 刘光品, 王仁芳, 等. 深度学习结合影像组学的肝脏肿瘤CT分割[J]. 中国图象图形学报, 2020, 25(10): 2128-2141.
LIU Y P, LIU G P, WANG R F, et al. Accurate segmentation method of liver tumor CT based on the combination of deep learning and radiomics[J]. Journal of Image and Grap-hics, 2020, 25(10): 2128-2141.
[16] SCHLEMPER J, OKTAY O, SCHAAP M, et al. Attention gated networks: learning to leverage salient regions in medical images[J]. Medical Image Analysis, 2019, 53: 197-207.
[17] JIN Q G, MENG Z P, SUN C M, et al. RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 1471.
[18] JIANG H, SHI T, BAI Z, et al. AhcNet: an application of attention mechanism and hybrid connection for liver tumor segmentation in CT volumes[J]. IEEE Access, 2019, 7: 24898- 24909.
[19] XU Y, CAI M, LIN L, et al. PA-ResSeg: a phase attention residual network for liver tumor segmentation from multi-phase CT images[J]. Medical Physics, 2021, 48(7):?3752-3766.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[21] CHEN J, LU Y, YU Q, et al. TransUNet: transformers make strong encoders for medical image segmentation[J]. arXiv:2102.04306, 2021.
[22] YU F, KOLTUN V, FUNKHOUSER T A. Dilated residual networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 636-644.
[23] HU Y, LI J, HUANG Y, et al. Channel-wise and spatial feature modulation network for single image super-resolu-tion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 3911-3927.
[24] LEE C Y, XIE S N, GALLAGHER P, et al. Deeply-super-vised nets[C]//Proceedings of the 18th International Confe-rence on Artificial Intelligence and Statistics, San Diego, May 9-12, 2015: 562-570.
[25] BILIC P, CHRIST P F, VORONTSOV E, et al. The liver tumor segmentation benchmark (LiTS)[J]. arXiv:1901.04056, 2019.
[26] SOLER L, HOSTETTLER A, AGNUS V, et al. 3D image reconstruction for comparison of algorithm database: a patient specific anatomical and medical image database[R]. Strasbourg: IRCAD, 2010.
[27] TAHA A A, HANBURY A. Metrics for evaluating 3D medi-cal image segmentation: analysis, selection, and tool[J]. BMC Medical Imaging, 2015, 15(1): 1-28.
[28] 徐宝泉, 凌彤辉. 基于级联Vnet-S网络的CT影像单一器官自动分割算法[J]. 计算机应用, 2019, 39(8): 2420-2425.
XU B Q, LING T H. Automatic segmentation algorithm for single organ of CT images based on cascaded Vnet-S network[J]. Journal of Computer Applications, 2019, 39(8): 2420-2425.
[29] 黄泳嘉, 史再峰, 王仲琦, 等. 基于混合损失函数的改进型U-Net肝部医学影像分割方法[J]. 激光与光电子学进展, 2020, 57(22): 66-75.
HUANG Y J, SHI Z F, WANG Z Q, et al. Improved U-Net based on mixed loss function for liver medical image seg-mentation[J]. Laser & Optoelectronics Progress, 2020, 57(22): 66-75.
[30] SEO H, HUANG C, BASSENNE M, et al. Modified U-Net (mU-Net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in CT images[J]. IEEE Transactions on Medical Imaging, 2019, 39(5): 1316-1325.
[31] ZHANG Y, PAN X, LI C, et al. 3D liver and tumor seg-mentation with CNNs based on region and distance metrics[J]. Applied Sciences, 2020, 10(11): 3794.
[32] BUDAK ü, GUO Y, TANYILDIZI E, et al. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation[J]. Medical Hypotheses, 2020, 134: 109431.
[33] XIE X, ZHANG W, WANG H, et al. Dynamic adaptive residual network for liver CT image segmentation[J]. Com-puters & Electrical Engineering, 2021, 91: 10702.
[34] HAN Y, LI X, WANG B, et al. Boundary loss-based 2.5D fully convolutional neural networks approach for segmen-tation: a case study of the liver and tumor on computed tomography[J]. Algorithms, 2021, 14(5): 144. |