[1] SINGH D, TRIPATHI G, JARA A J. A survey of Internet-of-things: future vision, architecture, challenges and services[C]//Proceedings of the 2014 IEEE World Forum on Internet of Things, Seoul, Mar 6-8, 2014. Washington: IEEE Computer Society,2014: 287-292.
[2] 任家东, 刘新倩, 王倩, 等. 基于KNN离群点检测和随机森林的多层入侵检测方法[J]. 计算机研究与发展, 2019, 56(3): 566-575.
REN J D, LIU X Q, WANG Q, et al. An multi-level intrusion detection method based on KNN outlier detection and random forests[J]. Journal of Computer Research and Development, 2019, 56(3): 566-575.
[3] AHMAD I, BASHERI M, IQBAL M J, et al. Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection[J]. IEEE Access, 2018, 6: 33789-33795.
[4] MABU S, GOTOH S, OBAYASHI M, et al. A random-forests-based classifier using class association rules and its application to an intrusion detection system[J]. Artificial Life and Robotics, 2016, 21(3): 371-377.
[5] 任晓奎, 缴文斌, 周丹. 基于粒子群的加权朴素贝叶斯入侵检测模型[J]. 计算机工程与应用, 2016, 52(7): 122-126.
REN X K, JIAO W B, ZHOU D. Intrusion detection model of weighted navie Bayes based on particle swarm optimization algorithm[J]. Computer Engineering and Applications, 2016, 52(7): 122-126.
[6] AHMIM A, MAGLARAS L, FERRAG M A, et al. A novel hierarchical intrusion detection system based on decision tree and rules-based models[C]//Proceedings of the 15th International Conference on Distributed Computing in Sensor Systems, Santorini, May 29-31, 2019. Piscataway: IEEE, 2019: 228-233.
[7] BLANCO R, MALAGóN P, BRIONGOS S, et al. Anomaly detection using Gaussian mixture probability model to implement intrusion detection system[C]//LNCS 11734:Proceedings of the 14th International Conference on Hybrid Artificial Intelligent Systems, León, Sep 4-6, 2019. Cham: Springer, 2019: 648-659.
[8] KOBER J, PETERS J. Reinforcement learning in robotics: a survey[M]//WIERING M A, VAN OTTERLO M. Rein-forcement Learning. Berlin, Heidelberg: Springer, 2012.
[9] SHIRAVI H, SHIRAVI A, GHORBANI A A. A survey of visualization systems for network security[J]. IEEE Tran-sactions on Visualization and Computer Graphics, 2012, 18(8): 1313-1329.
[10] GAO L, CHEN P, YU S. Demonstration of convolution kernel operation on resistive cross-point array[J]. IEEE Electron Device Letters, 2016, 37(7): 870-873.
[11] YANG A, ZHUANSUN Y, LIU C, et al. Design of intrusion detection system for Internet of things based on improved BP neural network[J]. IEEE Access, 2019, 7: 106043-106052.
[12] 燕昺昊, 韩国栋. 基于深度循环神经网络和改进SMOTE算法的组合式入侵检测模型[J]. 网络与信息安全学报, 2018, 4(7): 48-59.
YAN B H, HAN G D. Combinatorial intrusion detection model based on deep recurrent neural network and improved SMOTE algorithm[J]. Journal of Network and Information Security, 2018, 4(7): 48-59.
[13] HASSAN M M, GUMAEI A, ALSANAD A, et al. A hybrid deep learning model for efficient intrusion detection in big data environment[J]. Information Sciences, 2020, 513: 386-396.
[14] ZHANG Y, LI P S, WANG X H. Intrusion detection for IoT based on improved genetic algorithm and deep belief network[J]. IEEE Access, 2019, 7: 31711-31722.
[15] SHARMA T K, PANT M. Halton based initial distribution in artificial bee colony algorithm and its application in software effort estimation[C]//Proceedings of the 6th International Conference on Bio-Inspired Computing: Theories and App-lications, Penang, Sep 27-29, 2011. Washington: IEEE Computer Society, 2011: 80-84.
[16] 崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068-3090.
CUI J X, YANG B. Survey on Bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068-3090.
[17] INGRE B, YADAV A. Performance analysis of NSL-KDD dataset using ANN[C]//Proceedings of the 2015 International Conference on Signal Processing & Communication Engin-eering Systems, Guntur, Jan 2-3, 2015. Piscataway: IEEE, 2015: 92-96.
[18] MOUSTAFA N, SLAY J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]//Proceedings of the 2015 Military Communications and Information Systems Conference,Canberra, Nov 10-12, 2015. Piscataway: IEEE, 2015: 1-6.
[19] ALAZZAM H, SHARIEH A, SABRI K E. A feature selection algorithm for intrusion detection system based on Pigeon inspired[J]. Expert Systems with Applications, 2020, 148: 113249.
[20] MOUSTAFA N, SLAY J. A hybrid feature selection for network intrusion detection systems: central points[J]. arXiv: 1707.05505, 2017.
[21] AMIRI F, YOUSEFI M M R, LUCAS C, et al. Mutual information-based feature selection for intrusion detection systems[J]. Journal of Network and Computer Applications,2011, 34(4): 1184-1199.
[22] AMBUSAIDI M A, HE X J, NANDA P, et al. Building an intrusion detection system using a filter-based feature selection algorithm[J]. IEEE Transactions on Computers, 2016, 65(10): 2986-2998.
[23] KOZIK R, CHORAS M, FICCO M, et al. A scalable distributed machine learning approach for attack detection in edge computing environments[J]. Journal of Parallel and Distributed Computing, 2018, 119: 18-26.
[24] KUMAR V, SINHA D, DAS A K, et al. An integrated rule based intrusion detection system: analysis on UNSW-NB15 data set and the real time online dataset[J]. Cluster Computing, 2020, 23(2): 1397-1418.
[25] TAMA B A, COMUZZI M, RHEE K. TSE-IDS: a two-stage classifier ensemble for intelligent anomaly-based intrusion detection system[J]. IEEE Access, 2019, 7: 94497-94507.
[26] PAJOUH H H, JAVIDAN R, KHAYAMI R, et al. A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks[J]. IEEE Transactions on Emerging Topics in Computing, 2019, 7(2): 314-323.
[27] LI J Q, ZHAO Z F, LI R P, et al. AI-based two-stage intrusion detection for software defined IoT networks[J].IEEE Internet of Things Journal, 2019, 6(2): 2093-2102.
[28] KHAN F A, GUMAEI A, DERHAB A, et al. A novel two-stage deep learning model for efficient network intrusion detection[J]. IEEE Access, 2019, 7: 30373-30385.
[29] AMOR N B, BENFERHAT S, ELOUEDI Z. Naive Bayes vs decision trees in intrusion detection systems[C]//Proceedings of the 2004 ACM Symposium on Applied Computing, Nicosia, Mar 14-17, 2004. New York: ACM, 2004: 420-424.
[30] HUANG S K, LEI K. IGAN-IDS: an imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks[J]. Ad Hoc Networks, 2020, 105: 102177.
[31] ZHANG Y, LI P S,WANG X H. Intrusion detection for IoT based on improved genetic algorithm and deep belief network[J]. IEEE Access, 2019, 7: 31711-31722.
[32] LI Z P, QIN Z, HUANG K, et al. Intrusion detection using convolutional neural networks for representation learning[C]//LNCS 10638: Proceedings of the 24th International Conference on Neural Information Processing, Guangzhou,Nov 14-18, 2017. Cham: Springer, 2017: 858-866.
[33] ASHFAQ R A R, WANG X Z, HUANG Z X, et al. Fuzziness based semi-supervised learning approach for intrusion detection system[J]. Information Sciences, 2017, 378: 484-497. |