[1] |
LIU T Y. Learning to rank for information retrieval[C]// Pro-ceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval,Geneva, Jul 19-23, 2010. New York: ACM, 2010: 904.
|
[2] |
CHEN W, LIU T Y, LAN Y Y, et al. Ranking measures and loss functions in learning to rank[C]// Advances in Neural Information Processing Systems 22, Vancouver, Dec 7-10,2009. Red Hook: Curran Associates, 2009: 315-323.
|
[3] |
BURGES C J C. From RankNet to LambdaRank to Lambda-MART: an overview: MSR-TR-2010-82[R]. 2010.
|
[4] |
CAO Z, QIN T, LIU T Y, et al. Learning to rank: from pair-wise approach to listwise approach[C]// Proceedings of the 24th International Conference on Machine Learning, Cor-vallis, Jun 20-24, 2007. New York: ACM, 2007: 129-136.
|
[5] |
曹军梅, 马乐荣. 卷积重提取特征的文档列表排序学习方法[J]. 中文信息学报, 2020, 34(8): 86-93.
|
|
CAO J M, MA L R. Listwise reranking via convolutional re-extracted features[J]. Journal of Chinese Information Pro-cessing, 2020, 34(8): 86-93.
|
[6] |
WANG R X, FANG K, ZHOU R K, et al. SERank: optimize sequencewise learning to rank using squeeze-and-excitation network[J]. arXiv: 2006. 04084, 2020.
|
[7] |
AI Q Y, WANG X H, BRUCH S, et al. Learning groupwise multivariate scoring functions using deep neural networks[C]// Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, Santa Clara, Oct 2-5, 2019. New York: ACM, 2019: 85-92.
|
[8] |
YE P, DOERMANN D. Combining preference and absolute judgements in a crowd-sourced setting[C]// Proceedings of the 2013 ICML Workshop on Machine Learning Meets Crowd-sourcing, Atlanta, Jun 16-21, 2013: 1-7.
|
[9] |
JOACHIMS T, GRANKA L A, PAN B, et al. Accurately in-terpreting clickthrough data as implicit feedback[C]// Procee-dings of the 28th Annual International ACM SIGIR Con-ference on Research and Development in Information Re-trieval, Salvador, Aug 15-19, 2005. New York: ACM, 2005:154-161.
|
[10] |
ZHOU G R, ZHU X Q, SONG C R, et al. Deep interest network for click-through rate prediction[C]// Proceedings of the 24th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1059-1068.
|
[11] |
JOACHIMS T. Training linear SVMs in linear time[C]// Proceedings of the 12th ACM SIGKDD International Con-ference on Knowledge Discovery and Data Mining, Phila-delphia, Aug 20-23, 2006. New York: ACM, 2006: 217-226.
|
[12] |
FRIEDMAN J H. Greedy function approximation: a gra-dient boosting machine[J]. Annals of Statistics, 2001, 29(5):1189-1232.
DOI
URL
|
[13] |
JOACHIMS T. Optimizing search engines using clickthrough data[C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Phila-delphia, Aug 20-23, 2006. New York: ACM, 2006: 133-142.
|
[14] |
熊李艳, 陈晓霞, 钟茂生, 等. 基于PairWise排序学习算法研究综述[J]. 科学技术与工程, 2017, 17(21): 184-190.
|
|
XIONG L Y, CHEN X X, ZHONG M S, et al. Survey on PairWise of the learning to rank[J]. Science Technology and Engineering, 2017, 17(21): 184-190.
|
[15] |
TAYLOR M J, GUIVER J, ROBERTSON S, et al. SoftRank: optimizing non-smooth rank metrics[C]// Proceedings of the 2008 International Conference on Web Search and Web Data Mining, Palo Alto, Feb 11-12, 2008. New York: ACM, 2008: 77-86.
|
[16] |
黄震华, 张佳雯, 田春岐, 等. 基于排序学习的推荐算法研究综述[J]. 软件学报, 2016, 27(3): 691-713.
|
|
HUANG Z H, ZHANG J W, TIAN C Q, et al. Survey on learning-to-rank based recommendation algorithms[J]. Journal of Software, 2016, 27(3): 691-713.
|
[17] |
AI Q Y, BI K P, GUO J F, et al. Learning a deep listwise context model for ranking refinement[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 135-144.
|
[18] |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into re.pngiers: surpassing human-level performance on imagenet classification[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1026-1034.
|
[19] |
QIN T, LIU T Y. Introducing LETOR 4.0 datasets[J]. arXiv:1306. 2597, 2013.
|
[20] |
JOACHIMS T. A support vector method for multivariate performance measures[C]// Proceedings of the 22nd Inter-national Conference on Machine Learning, Bonn, Aug 7-11, 2005. New York: ACM, 2005: 377-384.
|
[21] |
KE G L, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]// Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 3146-3154.
|
[22] |
BRUCH S, WANG X H, BENDERSKY M, et al. An analysis of the softmax cross entropy loss for learning-to-rank with binary relevance[C]// Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, Santa Clara, Oct 2-5, 2019. New York: ACM, 2019: 75-78.
|