[1] |
JONAS G, MICHAEL A, DAVID G, et al. A convolutional encoder model for neural machine translation[J]. arXiv:1611. 02344, 2016.
|
[2] |
YANG Z, CHEN W, WANG F, et al. Improving neural machine translation with conditional sequence generative adversarial nets[J]. arXiv:1703. 04887, 2017.
|
[3] |
LI J, MONROE W, SHI T, et al. Adversarial learning for neural dialogue generation[J]. arXiv:1701. 06547, 2017.
|
[4] |
CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406. 1078, 2014.
|
[5] |
GRAVES A. Generating sequences with recurrent neural networks[J]. arXiv:1308. 0850, 2013.
|
[6] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
DOI
URL
|
[7] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv:1706. 03762, 2017.
|
[8] |
ZHANG X, LECUN Y. Text understanding from scratch[J]. arXiv:1502. 01710, 2015.
|
[9] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[C]// Advances in Neural Information Processing Systems 27, 2014: 2672-2680.
|
[10] |
YU L, ZHANG W, WANG J, et al. SeqGAN: sequence generative adversarial nets with policy gradient[J]. arXiv:1609. 05473, 2016.
|
[11] |
GUO J X, LU S D, CAI H, et al. Long text generation via adversarial training with leaked information[C]// Proceedings of the 32nd AAAI Conference on A.pngicial Intelligence, the 30th Innovative Applications of A.pngicial Intelligence, and the 8th AAAI Symposium on Educational Advances in A.pngicial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5141-5148.
|
[12] |
DETHLEFS N, CUAYÁHUITL H. Hierarchical reinforcement learning for adaptive text generation[C]// Proceedings of the 6th International Natural Language Generation Conference, Trim, Jul 7-9, 2010. Stroudsburg: ACL, 2010: 1-9.
|
[13] |
ALEXANDER S V, SIMON O, TOM S, et al. Feudal networks for hierarchical reinforcement learning[J]. arXiv:1703. 01161, 2017.
|
[14] |
PENG B, LI X, LI L, et al. Composite task-completion dialogue system via hierarchical deep reinforcement learning[J]. arXiv:1704. 03084, 2017.
|
[15] |
NIE W, NARODYTSKA N, PATEL A. RelGAN: relational generative adversarial networks for text generation[C]// Proceedings of the 7th International Conference on Learning Representations, New Orleans, May 6-9, 2019: 1462.
|
[16] |
SUTTON R S, MCALLESTER D A, SINGH S P, et al. Policy gradient methods for reinforcement learning with function approximation[C]// Advances in Neural Information Processing Systems 12, Denver, Nov 29-Dec 4, 1999. Cam-bridge: MIT Press, 1999: 1057-1063.
|
[17] |
THOMAS P S, BRUNSKILL E. Policy gradient methods for reinforcement learning with function approximation and action-dependent baselines[J]. arXiv:1706. 06643, 2017.
|
[18] |
CHE T, LI Y, ZHANG R, et al. Maximum-likelihood augmented discrete generative adversarial networks[J]. arXiv: 1702. 07983, 2017.
|
[19] |
PAPINENI K, ROUKOS S, WARD T, et al. Bleu: a method for automatic evaluation of machine translation[C]// Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, Jul 6-12, 2002. Stroudsburg: ACL, 2002: 311-318.
|
[20] |
NITISH S, HINTON G E, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
|
[21] |
MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411. 1784, 2014.
|