[1] LI X, ZHANG H, WANG R, et al. Multiview clustering: a scalable and parameter-free bipartite graph fusion method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 330-344.
[2] 徐金东, 赵甜雨, 冯国政, 等. 基于上下文模糊C均值聚类的图像分割算法[J]. 电子与信息学报, 2021, 43(7): 2079-2086.
XU J D, ZHAO T Y, FENG G Z, et al. Image segmentation algorithm based on context fuzzy C-means clustering[J]. Jour-nal of Electronics & Information Technology, 2021, 43(7): 2079-2086.
[3] 邢海燕, 刘超, 徐成, 等. 基于粒子群优化模糊C焊缝等级磁记忆定量识别模型[J]. 吉林大学学报(工学版), 2022, 52(3): 525-532.
XING H Y, LIU C, XU C, et al. Quantitative metal mag-netic memory classification model of weld grades based on particle swarm optimization fuzzy C-means[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(3): 525-532.
[4] CHEN H, LIANG M, LIU W, et al. An approach to boun-dary detection for 3D point clouds based on DBSCAN clus-tering[J]. Pattern Recognition, 2022, 124: 108431.
[5] 王芙银, 张德生, 张晓. 结合鲸鱼优化算法的自适应密度峰值聚类算法[J]. 计算机工程与应用, 2021, 57(3): 94-102.
WANG F Y, ZHANG D S, ZHANG X. Adaptive density peak clustering algorithm combining whale optimization algo-rithm[J]. Computer Engineering and Applications, 2021, 57(3): 94-102.
[6] LIU N, XU Z, ZENG X J, et al. An agglomerative hierarc-hical clustering algorithm for linear ordinal rankings[J]. Infor-mation Sciences, 2021, 557: 170-193.
[7] XU T, JIANG J. A graph adaptive density peaks clustering algorithm for automatic centroid selection and effective aggre-gation[J]. Expert Systems with Applications, 2022, 195: 116539.
[8] 彭启慧, 宣士斌, 高卿. 分布的自动阈值密度峰值聚类算法[J]. 计算机工程与应用, 2021, 57(5): 71-78.
PENG Q H, XUAN S B, GAO Q. Distribution automatic threshold density peak clustering algorithm[J]. Computer Engineering and Applications, 2021, 57(5): 71-78.
[9] MELNYKOV V, SARKAR S, MELNYKOV Y. On finite mixture modeling and model-based clustering of directed weighted multilayer networks[J]. Pattern Recognition, 2020,112: 107641.
[10] REZAEE M J, ESHKEVARI M, SABERI M, et al. GBK-means clustering algorithm: an improvement to the K-means algorithm based on the bargaining game[J]. Knowledge-Based Systems, 2021, 213: 106672.
[11] LIKAS A, VLASSIS N, VERBEEK J J. The global k-means clustering algorithm[J]. Pattern Recognition, 2003, 36(2): 451-461.
[12] ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH: an efficient data clustering method for very large databases[J]. ACM SIGMOD Record, 1996, 25(2): 103-114.
[13] SCHUBERT E, SANDER J, ESTER M, et al. DBSCAN revi-sited, revisited: why and how you should (still) use DBSCAN[J]. ACM Transactions on Database Systems, 2017, 42(3): 19.
[14] BUREVA V, SOTIROVA E, POPOV S, et al. Generalized net of cluster analysis process using STING: a statistical information grid approach to spatial data mining[C]//Pro-ceedings of the 12th International Conference on Flexible Query Answering Systems, London, Jun 21-22, 2017. Cham: Springer, 2017: 239-248.
[15] ANDRIYANOV N, TASHLINSKY A, DEMENTIEV V. Detailed clustering based on Gaussian mixture models[C]// Proceedings of the 2020 Intelligent Systems Conference, London, Sep 3-4, 2020. Cham: Springer, 2020: 437-448.
[16] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[17] 丁世飞, 徐晓, 王艳茹. 基于不相似性度量优化的密度峰值聚类算法[J]. 软件学报, 2020, 31(11): 3321-3333.
DING S F, XU X, WANG Y R. Optimized density peaks clustering algorithm based on dissimilarity measure[J]. Jou-rnal of Software, 2020, 31(11): 3321-3333.
[18] XIE J, GAO H, XIE W, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weigh-ted K-nearest neighbors[J]. Information Sciences, 2016, 354: 19-40.
[19] 纪霞, 姚晟, 赵鹏. 相对邻域与剪枝策略优化的密度峰值聚类算法[J]. 自动化学报, 2020, 46(3): 562-575.
JI X, YAO C, ZHAO P. Relative neighborhood and pruning strategy optimized density peaks clustering algorithm[J]. Acta Automatica Sinica, 2020, 46(3): 562-575.
[20] 赵嘉, 姚占峰, 吕莉, 等. 基于相互邻近度的密度峰值聚类算法[J]. 控制与决策, 2021, 36(3): 543-552.
ZHAO J, YAO Z F, LV L, et al. Density peaks clustering based on mutual neighbor degree[J]. Control and Decision, 2021, 36(3): 543-552.
[21] 孙林, 秦小营, 徐久成, 等.基于K近邻和优化分配策略的密度峰值聚类算法[J]. 软件学报, 2022, 33(4): 1390-1411.
SUN L, QIN X Y, XU J C, et al. Density peak clustering algorithm based on K-nearest neighbors and optimized allo-cation strategy[J]. Journal of Software, 2022, 33(4): 1390-1411.
[22] BLAKE C L, MERZ C J. UCI repository of machine lear-ning database[EB/OL]. (2016-12-28) [2022-04-20]. http://archive.ics.uci.edu/ml/index.php.
[23] ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS: ordering points to identify the clustering structure[J]. ACM SIGMOD Record, 1999, 28(2): 49-60.
[24] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976.
[25] VINH N X, EPPS J, BAILEY J. Information theoretic mea-sures for clusterings comparison: variants, properties, norma-lization and correction for chance[J]. The Journal of Machine Learning Research, 2010, 11(1): 2837-2854.
[26] FOWLKES E B, MALLOWS C L. A method for compa-ring two hierarchical clusterings[J]. Journal of the Ameri-can Statistical Association, 1983, 78(383): 553-569.
|