[1] ZHANG F Z, NICHOLAS J Y, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 353-362.
[2] SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]//Procee-dings of the 12th ACM Conference on Recommender Systems, Vancouver, Oct 2-7, 2018. New York: ACM, 2018: 297-305.
[3] WANG H W, ZHANG F Z, XIE X, et al. DKN: deep know-ledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1835-1844.
[4] BELLINI V, ANELLI V W, NOIA T D, et al. Auto-encoding user ratings via knowledge graphs in recommendation scenarios[C]//Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, Como, Aug 27, 2017. New York: ACM, 2017: 60-66.
[5] HU B B, SHI C, ZHAO X, et al. Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1531-1540.
[6] ZHAO H, YAO Q M, LI J D, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 635-644.
[7] YU X, REN X, SUN Y Z, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, Feb 24-28, 2014. New York: ACM, 2014: 283-292.
[8] WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426.
[9] WANG X, WANG D, XU C, et al. Explainable reasoning over knowledge graphs for recommendation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5329-5336.
[10] TANG X L, WANG T Y, YANG H Z, et al. AKUPM: attention-enhanced knowledge-aware user preference model for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 1891-1899.
[11] WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 950-958.
[12] GUAN N N, SONG D D, LIAO L J. Knowledge graph embedding with concepts[J]. Knowledge-Based Systems, 2019, 164: 38-44.
[13] MOON C S, JONES P, SAMATOVA N F. Learning entity type embeddings for knowledge graph completion[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 2215-2218.
[14] WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 2019 World Wide Web Conference, SanFrancisco, May 13-17, 2019. New York: ACM, 2019: 3307-3313.
[15] YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 974-983.
[16] ZHANG J, SHI X, ZHAO S, et al. STAR-GCN: stacked and reconstructed graph convolutional networks for recommender systems[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. New York: ACM, 2019: 4264-4270.
[17] YANG Z X, DONG S B. HAGERec: hierarchical attention graph convolutional network incorporating knowledge graph for explainable recommendation[J]. Knowledge-Based Systems, 2020, 204: 106194.
[18] 高仰, 刘渊. 融合知识图谱和短期偏好的推荐算法[J]. 计算机科学与探索, 2021, 15(6): 1133-1144.
GAO Y, LIU Y. Recommendation algorithm combining know-ledge graph and short-term preferences[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1133-1144.
[19] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 2015 International Conference on Learning Representations, San Diego, May 7-9, 2015.
[20] HE X N, CHUA T S. Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Aug 7-11, 2017. New York: ACM, 2017: 355-364. |