[1] YADAV A, VISHWAKARMA D K. Sentiment analysis using deep learning architectures: a review[J]. Artificial Intelligence Review, 2020, 53(6): 4335-4385.
[2] JO Y, OH A H. Aspect and sentiment unification model for online review analysis[C]//Proceedings of the 4th ACM Inter-national Conference on Web Search and Data Mining, Hong Kong, China, Feb 9-12, 2011: 815-824.
[3] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 task 5: aspect based sentiment analysis[C]//Proceedings of the 2016 International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2016: 19-30.
[4] SAEIDI M, BOUCHARD G, LIAKATA M, et al. Sentihood: targeted aspect based sentiment analysis dataset for urban neighbourhoods[J]. arXiv:1610.03771, 2016.
[5] TANG D, QIN B, LIU T. Aspect level sentiment classifica-tion with deep memory network[J]. arXiv:1605.08900, 2016.
[6] WANG S, MAZUMDER S, LIU B, et al. Target-sensitive memory networks for aspect sentiment classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018.Stroudsburg: ACL, 2018: 957-967.
[7] LIU J, ZHANG Y. Attention modeling for targeted sentiment[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics.Stroudsburg: ACL, 2017: 572-577.
[8] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you needC]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[9] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[10] SUN C, HUANG L, QIU X. Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence[J]. arXiv:1903.09588, 2019.
[11] ZENG B, YANG H, XU R, et al. LCF: a local context focus mechanism for aspect-based sentiment classification[J]. Applied Sciences, 2019, 9(16): 3389.
[12] 吴仁彪, 乔晗, 贾云飞, 等. 基于胶囊网络的中长微博情感分析[J]. 信号处理, 2022, 38(8): 1632-1641.
WU R B, QIAO H, JIA Y F, et al. Sentiment analysis of mid-length microblog based on capsule network[J]. Journal of Signal Processing, 2022, 38(8): 1632-1641.
[13] 赵志影, 邵新慧, 林幸. 用于方面情感分析的结合图卷积神经网络的注意力模型[J]. 中文信息学报, 2022, 36(7): 154-163.
ZHAO Z Y, SHAO X H, LIN X. GCN-aware attention networks for aspect-based sentiment analysis[J]. Journal of Chinese Information Processing, 2022, 36(7): 154-163.
[14] WU Z, ONG D C. Context-guided BERT for targeted aspect-based sentiment analysis[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 14094-14102.
[15] JIANG L, YU M, ZHOU M, et al. Target-dependent Twitter sentiment classification[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2011: 151-160.
[16] YANG B, LI J, WONG D F, et al. Context-aware self-attention networks[C]//Proceedings of the 2019 AAAI Con-ference on Artificial Intelligence, Hawaii, Jan 27-31, 2019.Stroudsburg: ACL, 2019: 387-394.
[17] TAY Y, LUU A T, ZHANG A, et al. Compositional de-attention networks[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec?8-14,?2019: 6132-6142.
[18] 张龙辉, 尹淑娟, 任飞亮, 等. BSLRel: 基于二元序列标注的级联关系三元组抽取模型[J]. 中文信息学报, 2021, 35(6): 74-84.
ZHANG L H, YIN S J, REN F L, et al. BSLRel: a binary sequence labeling based cascading relation triple extraction model[J]. Journal of Chinese Information Processing, 2021, 35(6): 74-84.
[19] BRITZ D, GOLDIE A, LUONG M T, et al. Massive explo-ration of neural machine translation architectures[J]. arXiv:1703.03906, 2017.
[20] RUDER S, GHAFFARI P, BRESLIN J G. A hierarchical model of reviews for aspect-based sentiment analysis[J]. arXiv:1609.02745, 2016.
[21] TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[J]. arXiv:1512.01100, 2015.
[22] MA Y, PENG H, CAMBRIA E. Targeted aspect-based senti-ment analysis via embedding commonsense knowledge into an attentive LSTM[C]//Proceedings of the 32nd AAAI Con-ference on Artificial Intelligence, the 30th Innovative Appli-cations of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Stroudsburg: ACL, 2018: 5876-5883.
[23] CAMBRIA E, PORIA S, BAJPAI R, et al. SenticNet 4: a semantic resource for sentiment analysis based on conceptual primitives[C]//Proceedings of the 26th International Confe-rence on Computational Linguistics: Technical Papers, Osaka, Dec 9-14, 2016: 2666-2677.
[24] LIU F, COHN T, BALDWIN T. Recurrent entity networks with delayed memory update for targeted aspect-based senti-ment analysis[J]. arXiv:1804.11019, 2018.
[25] HENAFF M, WESTON J, SZLAM A, et al. Tracking the world state with recurrent entity networks[J]. arXiv:1612.03969, 2016.
[26] PHAN M H, OGUNBONA P O. Modelling context and syntactical features for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3211-3220.
[27] MAO Y, SHEN Y, YU C, et al. A joint training dual-MRC framework for aspect based sentiment analysis[J]. arXiv:2101.00816, 2021.
[28] LI R, CHEN H, FENG F, et al. Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computa-tional Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 6319-6329.
[29] BRUN C, POPA D N, ROUX C. XRCE: hybrid classification for aspect-based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Aug 23-24, 2014. Stroudsburg: ACL, 2014: 838-842.
[30] KIRITCHENKO S, ZHU X, CHERRY C, et al. NRC-Canada-2014: detecting aspects and sentiment in customer reviews[C]//Proceedings of the 8th International Workshop on Seman-tic Evaluation, Dublin, Aug 23-24, 2014. Stroudsburg: ACL, 2014: 437-442. |