计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (1): 217-230.DOI: 10.3778/j.issn.1673-9418.2209033

• 人工智能·模式识别 • 上一篇    下一篇

用于方面级情感分析的情感增强双图卷积网络

张文轩,殷雁君,智敏   

  1. 内蒙古师范大学 计算机科学技术学院,呼和浩特 010022
  • 出版日期:2024-01-01 发布日期:2024-01-01

Affection Enhanced Dual Graph Convolution Network for Aspect Based Sentiment Analysis

ZHANG Wenxuan, YIN Yanjun, ZHI Min   

  1. College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
  • Online:2024-01-01 Published:2024-01-01

摘要: 方面级情感分析是一项细粒度的情感分类任务。近年来,依存树上的图神经网络被用于建模方面项及其意见项间的依赖关系。然而,这类方法通常具有高度依赖依存树解析质量的缺点。同时,大多数现有研究着重关注语法信息,忽视了情感知识在建模特定方面与上下文之间情感依赖关系中的作用。为解决以上问题,设计并提出了用于方面级情感分析的情感增强双图卷积网络。模型基于依存树与注意力机制建立双通道结构,在更为准确、高效地捕捉方面与上下文间语法与语义关联的同时减轻了模型对依存树的依赖程度。此外,模型引入情感知识用于增强图结构,帮助模型更好地提取特定方面的情感依赖关系。模型在3个公开基准数据集Rest14、Lap14、Twitter上的准确率分别达到了84.32%、78.20%、76.12%,接近或超越目前最先进的性能。实验表明,提出的方法能够合理利用语义和语法信息,在使用更少参数的情况下实现较为先进的情感分类性能。

关键词: 方面级情感分析, 注意力机制, 依存树, 图卷积网络, 情感知识

Abstract: Aspect-based sentiment analysis is a fine-grained sentiment classification task. In recent years, graph neural network on dependency tree has been used to model the dependency relationship between aspect terms and their opinion terms. However, such methods usually have the disadvantage of highly dependent on the quality of dependency parsing. Furthermore, most existing works focus on syntactic information, while ignoring the effect of affective knowledge in modeling the sentiment-related dependencies between specific aspects and context. In order to solve these problems, an affection enhanced dual graph convolution network is designed and proposed for aspect-based sentiment analysis. The model establishes a dual channel structure based on the dependency tree and attention mechanism, which can more accurately and efficiently capture the syntactic and semantic dependencies between aspects and contexts, and reduce the dependence of the model on the dependency tree. In addition, affective knowledge is integrated to enhance the graph structure and help the model better extract the sentiment-related dependencies of specific aspects. The accuracy of the model on the three open benchmark datasets Rest14, Lap14 and Twitter reaches 84.32%, 78.20% and 76.12% respectively, approaching or exceeding the state-of-the-art perfor-mance. Experiments show that the method proposed can make rational use of semantic and syntactic information, and achieves advanced sentiment classification performance with fewer parameters.

Key words: aspect-based sentiment analysis, attention mechanism, dependency tree, graph convolutional networks, affective knowledge