[1] LIU B. Sentiment analysis and opinion mining[M]//Synthesis Lectures on Human Language Technologies. San Rafael: Morgan & Claypool Publishers, 2012: 1-167.
[2] 张严,李天瑞. 面向评论的方面级情感分析综述[J]. 计算机科学, 2020, 47(6): 194-200.
ZHANG Y, LI T R. Review of comment-oriented aspect-based sentiment analysis[J]. Computer Science, 2020, 47(6): 194-200.
[3] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Proces-sing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[4] LIU H, CHATTERJEE I, ZHOU M C, et al. Aspect-based sentiment analysis: a survey of deep learning methods[J]. IEEE Transactions on Computational Social Systems, 2020, 7(6): 1358-1375.
[5] ZHANG W, LI X, DENG Y, et al. A survey on aspect-based sentiment analysis: tasks, methods, and challenges[J]. arXiv: 2203.01054, 2022.
[6] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[7] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[8] LIANG B, SU H, GUI L, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convolu-tional networks[J]. Knowledge-Based Systems, 2022, 235: 107643.
[9] TANG H, JI D, LI C, et al. Dependency graph enhanced dual-transformer structure for aspect-based sentiment classi-fication[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6578-6588.
[10] LI R, CHEN H, FENG F, et al. Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceed-ings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 6319-6329.
[11] DING X, LIU B, YU P S. A holistic lexicon-based approach to opinion mining[C]//Proceedings of the 2008 International Conference on Web Search and Data Mining. New York:ACM, 2008: 231-240.
[12] KIRITCHENKO S, ZHU X, CHERRY C, et al. NRC-Canada-2014: detecting aspects and sentiment in customer reviews[C]//Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Aug 23-24, 2014: 437-442.
[13] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 606-615.
[14] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[J]. arXiv:1709.00893, 2017.
[15] FAN F, FENG Y, ZHAO D. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3433-3442.
[16] HUANG B, OU Y, CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]//Proceedings of the 2018 International Conference on Social Computing, Behavioral-Cultural Modeling and Pred-iction and Behavior Representation in Modeling and Simul-ation. Cham: Springer, 2018: 197-206.
[17] CHEN D, MANNING C D. A fast and accurate dependency parser using neural networks[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 740-750.
[18] ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional net-works[C]//Proceedings of the 2019 Conference on Empri-cal Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Proces-sing. Stroudsburg: ACL, 2019: 4568-4578.
[19] HUANG B, CARLEY K M. Syntax-aware aspect level sen-timent classification with graph attention networks[C]//Pro-ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5469-5477.
[20] WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis[J]. arXiv:2004.12362, 2020.
[21] XU G, LIU P, ZHU Z, et al. Attention-enhanced graph con-volutional networks for aspect-based sentiment classifica-tion with multi-head attention[J]. Applied Sciences, 2021, 11(8): 3640.
[22] CHEN C, TENG Z, ZHANG Y. Inducing target-specific latent structures for aspect sentiment classification[C]//Pro-ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 5596-5607.
[23] MA Y, PENG H, CAMBRIA E. Targeted aspect-based senti-ment analysis via embedding commonsense knowledge into an attentive LSTM[C]//Proceedings of the 32nd AAAI Con-ference on Artificial Intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence. Menlo Park: AAAI, 2018: 5876-5883.
[24] ZHONG Q, DING L, LIU J, et al. Knowledge graph aug-mented network towards multiview representation learning for aspect-based sentiment analysis[J]. arXiv:2201.04831, 2022.
[25] SUN K, ZHANG R, MENSAH S, et al. Aspect-level senti-ment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Strouds-burg: ACL, 2019: 5679-5688.
[26] CAMBRIA E, LI Y, XING F Z, et al. SenticNet 6: ensem-ble application of symbolic and subsymbolic AI for senti-ment analysis[C]//Proceedings of the 29th ACM Internatio-nal Conference on Information & Knowledge Management. New York: ACM, 2020: 105-114.
[27] XING F Z, PALLUCCHINI F, CAMBRIA E. Cognitive-inspired domain adaptation of sentiment lexicons[J]. Infor-mation Processing & Management, 2019, 56(3): 554-564.
[28] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. Semeval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2014: 27-35.
[29] DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classifica-tion[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 49-54.
[30] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543.
[31] DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Asso-ciation for Computational Linguistics. Stroudsburg: ACL, 2014: 49-54.
[32] LI X, BING L, LAM W, et al. Transformation networks for target-oriented sentiment classification[J]. arXiv:1805.01086, 2018.
[33] ZHANG M, QIAN T. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 3540-3549.
[34] PANG S, XUE Y, YAN Z, et al. Dynamic and multi-channel graph convolutional networks for aspect-based sentiment analysis[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 2627-2636. |