计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (11): 2848-2871.DOI: 10.3778/j.issn.1673-9418.2401033
任安琪,柳林,王海龙,刘静
出版日期:
2024-11-01
发布日期:
2024-10-31
REN Anqi, LIU Lin, WANG Hailong, LIU Jing
Online:
2024-11-01
Published:
2024-10-31
摘要: 信息抽取是知识图谱构建的基础,关系抽取作为信息抽取的关键流程和核心步骤,旨在从文本数据中定位实体并识别实体间的语义联系。因此提高关系抽取的效率可以有效提升信息抽取的质量,进而影响到知识图谱的构建以及后续的下游任务。关系抽取按照抽取文本长度可以分为句子级关系抽取和文档级关系抽取,两种级别的抽取方法在不同应用场景下各有优缺点。句子级关系抽取适用于较小规模数据集的应用场景,而文档级关系抽取适用于新闻事件分析、长篇报告或文章的关系挖掘等场景。不同于已有的关系抽取,介绍了关系抽取的基本概念以及领域内近年来的发展历程,罗列了两种级别关系抽取所采用的数据集,对数据集的特点进行概述;分别对句子级关系抽取和文档级关系抽取进行了阐述,介绍了不同级别关系抽取的优缺点,并分析了各类方法中代表模型的性能以及局限性;总结了当前研究领域中存在的问题并对关系抽取发展前景进行了展望。
任安琪, 柳林, 王海龙, 刘静. 面向文本实体关系抽取研究综述[J]. 计算机科学与探索, 2024, 18(11): 2848-2871.
REN Anqi, LIU Lin, WANG Hailong, LIU Jing. Review of Text-Oriented Entity Relation Extraction Research[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(11): 2848-2871.
[1] 田玲, 张谨川, 张晋豪, 等. 知识图谱综述——表示、构建、推理与知识超图理论[J]. 计算机应用, 2021, 41(8): 2161-2186. TIAN L, ZHANG J C, ZHANG J H, et al. Knowledge graph survey: representation, construction, reasoning and know-ledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8): 2161-2186. [2] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250. [3] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a Web of open data[C]//Proceedings of the 2007 International Semantic Web Conference. Berlin, Heidelberg: Springer, 2007: 722-735. [4] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web, Banff, May 8-12, 2007. New York: ACM, 2007: 697-706. [5] VRANDE?I? D, KR?TZSCH M. Wikidata: a free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57(10): 78-85. [6] CARLSON A, BETTERIDGE J, KISIEL B, et al. Toward an architecture for never-ending language learning[C]//Proceedings of the 2010 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2010: 1306-1313. [7] HAO Y, ZHANG Y, LIU K, et al. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2017: 221-231. [8] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 601-610. [9] GONG F, WANG M, WANG H, et al. SMR: medical knowledge graph embedding for safe medicine recommendation[J]. Big Data Research, 2021, 23: 100174. [10] 赵晔辉, 柳林, 王海龙, 等. 知识图谱推荐系统研究综述[J]. 计算机科学与探索, 2023, 17(4): 771-791. ZHAO Y H, LIU L, WANG H L, et al. Survey of knowledge graph recommendation system research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 771-791. [11] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600. LIU Q, LI Y, DUAN H, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582-600. [12] 李冬梅, 张扬, 李东远, 等. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. LI D M, ZHANG Y, LI D Y, et al. Review of entity relation extraction methods[J]. Journal of Computer Research and Development, 2020, 57(7): 1424-1448. [13] 皮德常, 吴致远, 曹建军. 基于知识图谱表示学习的谣言早期检测方法[J]. 电子学报, 2023, 51(2): 385-395. PI D C, WU Z Y, CAO J J. Early rumor detection method based on knowledge graph representation learning[J]. Acta Electronica Sinica, 2023, 51(2): 385-395. [14] 张西硕, 柳林, 王海龙, 等. 知识图谱中实体关系抽取方法研究[J]. 计算机科学与探索, 2024, 18(3): 574-596. ZHANG X S, LIU L, WANG H L, et al. Survey of entity relationship extraction methods in knowledge graphs[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 574-596. [15] 冯钧, 魏大保, 苏栋, 等. 文档级实体关系抽取方法研究综述[J]. 计算机科学, 2022, 49(10): 224-242. FENG J, WEI D B, SU D, et al. Survey of documentlevel entity relation extraction methods[J]. Computer Science, 2022, 49(10): 224-242. [16] 祝涛杰, 卢记仓, 周刚, 等. 文档级关系抽取技术研究综述[J]. 计算机科学, 2023, 50(5): 189-200. ZHU T J, LU J C, ZHOU G, et al. Review of document-level relation extraction techniques[J]. Computer Science, 2023, 50(5): 189-200. [17] YAO Y, YE D, LI P, et al. DocRED: a large-scale document-level relation extraction dataset[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1906.06127. [18] CHENG Q, LIU J, QU X, et al. HacRED: a large-scale relation extraction dataset toward hard cases in practical applications[C]//Findings of the Association for Computational Linguistics: Association for Computational Linguistics-International Joint Conference on Natural Language Processing 2021. Stroudsburg: ACL, 2021: 2819-2831. [19] 鄂海红, 张文静, 肖思琪, 等. 深度学习实体关系抽取研究综述[J]. 软件学报, 2019, 30(6): 1793-1818. E H H, ZHANG W J, XIAO S Q, et al. Survey of entity relationship extraction based on deep learning[J]. Journal of Software, 2019, 30(6): 1793-1818. [20] 王传栋, 徐娇, 张永. 实体关系抽取综述[J]. 计算机工程与应用, 2020, 56(12): 25-36. WANG C D, XU J, ZHANG Y. Survey of entity relation extraction[J]. Computer Engineering and Applications, 2020, 56(12): 25-36. [21] 张仰森, 刘帅康, 刘洋, 等. 基于深度学习的实体关系联合抽取研究综述[J]. 电子学报, 2023, 51(4): 1093-1116. ZHANG Y S, LIU S K, LIU Y, et al. Joint extraction of entities and relations based on deep learning: a survey[J]. Acta Electronica Sinica, 2023, 51(4): 1093-1116. [22] HENDRICKX I, KIM S N, KOZAREVA Z, et al. SemEval-2010 task 8: multi-way classification of semantic relations between pairs of nominals[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1911.10422. [23] ALT C, GABRYSZAK A, HENNIG L. TACRED revisited: a thorough evaluation of the TACRED relation extraction task[EB/OL]. [ 2023-11-24]. https://arxiv.org/abs/2004.14855. [24] BENTIVOGLI L, FORNER P, GIULIANO C, et al. Extending English ACE 2005 corpus annotation with ground-truth links to Wikipedia[C]//Proceedings of the 2nd Workshop on the People??s Web Meets NLP: Collaboratively Constructed Semantic Resources, Beijing, Aug 28, 2010: 19-27. [25] MALOUF R. Markov models for language-independent named entity recognition[C]//Proceedings of the 6th Conference on Natural Language Learning, Held in Cooperation with Proceedings of the 19th International Conference on Computational Linguistics. Stroudsburg: ACL, 2002. [26] SANG E F, DE MEULDER F. Introduction to the CoNLL-2003 shared task: language-independent named entity recog-nition[EB/OL]. [2023-11-24]. https://arxiv.org/abs/cs/0306050. [27] SMIRNOVA A, LARANETTO H, KOLENDA N. Ideology through sentiment analysis: a changing perspective on Russia and Islam in NYT[J]. Discourse & Communication, 2017, 11(3): 296-313. [28] WEI C H, PENG Y, LEAMAN R, et al. Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task[J]. Database, 2016: baw032. [29] YAKOUT M, ELMAGARMID A K, NEVILLE J, et al. GDR: a system for guided data repair[C]//Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2010: 1223-1226. [30] JAIN S, VAN ZUYLEN M, HAJISHIRZI H, et al. SciREX: a challenge dataset for document-level information extraction[EB/OL]. [2023-11-24]. https://arxiv.org/abs/2005.00512. [31] GAO T, HAN X, ZHU H, et al. FewRel 2.0: towards more challenging few-shot relation classification[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1910.07124. [32] 杜晋华, 尹浩, 冯嵩. 中文电子病历命名实体识别的研究与进展[J]. 电子学报, 2022, 50(12): 3030-3053. DU J H, YIN H, FENG S. Research and development of named entity recognition in Chinese electronic medical record[J]. Acta Electronica Sinica, 2022, 50(12): 3030-3053. [33] AONE C, HALVERSON L, HAMPTON T, et al. SRA: description of the IE2 system used for MUC-7[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. [34] FUNDEL K, KüFFNER R, ZIMMER R. RelEx—relation extraction using dependency parse trees[J]. Bioinformatics, 2007, 23(3): 365-371. [35] MILLER S, FOX H, RAMSHAW L, et al. A novel use of statistical parsing to extract information from text[C]//Proceedings of the 1st Meeting of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2000: 226-233. [36] 温春, 石昭祥, 辛元. 基于扩展关联规则的中文非分类关系抽取[J]. 计算机工程, 2009, 35(24): 63-65. WEN C, SHI Z X, XIN Y. Chinese non-taxonomic relation extraction based on extended association rule[J]. Computer Engineering, 2009, 35(24): 63-65. [37] 邓擘, 樊孝忠, 杨立公. 用语义模式提取实体关系的方法[J]. 计算机工程, 2007, 33(10): 212-214. DENG B, FAN X Z, YANG L G. Entity relation extraction method using semantic pattern[J]. Computer Engineering, 2007, 33(10): 212-214. [38] KAMBHATLA N. Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction[C]//Proceedings of the 2004 ACL Interactive Poster and Demonstration Sessions. Stroudsburg: ACL, 2004: 178-181. [39] GIULIANO C, LAVELLI A, PIGHIN D, et al. FBK-IRST: kernel methods for semantic relation extraction[C]//Procee-dings of the 4th International Workshop on Semantic Evalua-tions, Prague, Jun 23-24, 2007. Stroudsburg: ACL, 2007: 141-144. [40] TRATZ S, HOVY E. ISI: automatic classification of relations between nominals using a maximum entropy classifier[C]//Proceedings of the 5th International Workshop on Semantic Evaluation, Uppsala, Jul 15-16, 2010. Stroudsburg: ACL, 2010: 222-225. [41] CULOTTA A, MCCALLUM A, BETZ J. Integrating probabilistic extraction models and data mining to discover relations and patterns in text[C]//Proceedings of the 2006 Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, New York, Jun 4-9, 2006. Stroudsburg: ACL, 2006: 296-303. [42] ZELENKO D, AONE C, RICHARDELLA A. Kernel methods for relation extraction[J]. Journal of Machine Learning Research, 2003, 3: 1083-1106. [43] CULOTTA A, SORENSEN J. Dependency tree kernels for relation extraction[C]//Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics.Stroudsburg: ACL, 2004: 423-429. [44] BUNESCU R, MOONEY R. A shortest path dependency kernel for relation extraction[C]//Proceedings of the 2005 Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Vancouver, Oct 6-8, 2005. Stroudsburg: ACL, 2005: 724-731. [45] ZHANG X, GAO Z, ZHU M. Kernel methods and its application in relation extraction[C]//Proceedings of the 2011 International Conference on Computer Science and Service System.Piscataway: IEEE, 2011: 1362-1365. [46] 庄成龙, 钱龙华, 周国栋. 基于树核函数的实体语义关系抽取方法研究[J]. 中文信息学报, 2009, 23(1): 3-8. ZHUANG C L, QIAN L H, ZHOU G D. Research on tree kernel based entity semantic relation extraction[J]. Journal of Chinese Information Processing, 2009, 23(1): 3-8. [47] 刘方驰, 钟志农, 雷霖, 等. 基于机器学习的实体关系抽取方法[J]. 兵工自动化, 2013, 32(9): 57-62. LIU F C, ZHONG Z N, LEI L, et al. Entity relation extraction method based on machine learning[J]. Ordnance Industry Automation, 2013, 32(9): 57-62. [48] LIU C Y, SUN W B, CHAO W H, et al. Convolution neural network for relation extraction[C]//Proceedings of the 2013 International Conference on Advanced Data Mining and Applications. Berlin, Heidelberg: Springer, 2013: 231-242. [49] ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics, Dublin, Aug 23-29, 2014. Stroudsburg: ACL, 2014: 2335-2344. [50] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12: 2493-2537. [51] NGUYEN T H, GRISHMAN R. Relation extraction: perspective from convolutional neural networks[C]//Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing, Denver, Jun 5, 2015. Stroudsburg: ACL, 2015: 39-48. [52] WANG L, CAO Z, DE MELO G, et al. Relation classification via multi-level attention CNNs[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 1298-1307. [53] SANTOS C N, XIANG B, ZHOU B. Classifying relations by ranking with convolutional neural networks[EB/OL].[2023-11-24]. https://arxiv.org/abs/1504.06580. [54] XU K, FENG Y, HUANG S, et al. Semantic relation classification via convolutional neural networks with simple negative sampling[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1506.07650. [55] YE H, CHAO W, LUO Z, et al. Jointly extracting relations with class ties via effective deep ranking[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1612.07602. [56] ZHU J, QIAO J, DAI X, et al. Relation classification via target-concentrated attention CNNs[C]//Proceedings of the 24th International Conference on Neural Information Processing, Guangzhou, Nov 14-18, 2017. Cham: Springer, 2017: 137-146. [57] BAI F, RITTER A. Structured minimally supervised learning for neural relation extraction[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1904.00118. [58] 高丹, 彭敦陆, 刘丛. 海量法律文书中基于CNN的实体关系抽取技术[J]. 小型微型计算机系统, 2018, 39(5): 1021-1026. GAO D, PENG D L, LIU C. Entity relation extraction based on CNN in large-scale text data[J]. Journal of Chinese Computer Systems, 2018, 39(5): 1021-1026. [59] 孙建东, 顾秀森, 李彦, 等. 基于COAE2016数据集的中文实体关系抽取算法研究[J]. 山东大学学报(理学版), 2017, 52(9): 7-12. SUN J D, GU X S, LI Y, et al. Chinese entity relation extraction algorithms based on COAE2016 datasets[J]. Journal of Shandong University (Natural Science), 2017, 52(9): 7-12. [60] SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Jul 12-14, 2012.Stroudsburg: ACL, 2012: 1201-1211. [61] HASHIMOTO K, MIWA M, TSURUOKA Y, et al. Simple customization of recursive neural networks for semantic relation classification[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2013: 1372-1376. [62] CHEN L, MILLER T, DLIGACH D, et al. Self-training improves recurrent neural networks performance for temporal relation extraction[C]//Proceedings of the 9th International Workshop on Health Text Mining and Information Analysis. Stroudsburg: ACL, 2018: 165-176. [63] LIN Y, SHEN S, LIU Z, et al. Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 2124-2133. [64] SUNDERMEYER M, SCHLüTER R, NEY H. LSTM neural networks for language modeling[C]//Proceedings of the 13th Annual Conference of the International Speech Communication Association, Portland, Sep 9-13, 2012: 194-197. [65] XU Y, MOU L, LI G, et al. Classifying relations via long short term memory networks along shortest dependency paths[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1785-1794. [66] ZHANG S, ZHENG D, HU X, et al. Bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Stroudsburg: ACL,2015: 73-78. [67] 李枫林, 柯佳. 基于深度学习框架的实体关系抽取研究进展[J]. 情报科学, 2018, 36(3): 169-176. LI F L, KE J. Research progress of entity relation extraction base on deep learning framework[J]. Information Science, 2018, 36(3): 169-176. [68] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL].[2023-11-24]. https://arxiv.org/abs/1312.6203. [69] ZHANG Y, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1809.10185. [70] GUO Z, ZHANG Y, LU W. Attention guided graph convolutional networks for relation extraction[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1906.07510. [71] SUN K, ZHANG R, MAO Y, et al. Relation extraction with convolutional network over learnable syntax-transport graph[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 8928-8935. [72] MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1601.00770. [73] ZHENG S, HAO Y, LU D, et al. Joint entity and relation extraction based on a hybrid neural network[J]. Neurocomputing, 2017, 257: 59-66. [74] ZHENG S, WANG F, BAO H, et al. Joint extraction of entities and relations based on a novel tagging scheme[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1706.05075. [75] BRIN S. Extracting patterns and relations from the world wide web[C]//Proceedings of the 1998 International Workshop on the World wide Web and Databases. Berlin, Heidelberg: Springer, 1998: 172-183. [76] AGICHTEIN E, GRAVANO L. Snowball: extracting relations from large plain-text collections[C]//Proceedings of the 5th ACM Conference on Digital Libraries. New York:ACM, 2000: 85-94. [77] ZHU J, NIE Z, LIU X, et al. Statsnowball: a statistical approach to extracting entity relationships[C]//Proceedings of the 18th International Conference on World Wide Web. New York: ACM, 2009: 101-110. [78] QIN Z, YE F. Research on reliability of instance and pattern in semi-supervised entity relation extraction[C]//Recent Developments in Intelligent Computing, Communication and Devices: Proceedings of the 2019 International Conference on Computer Design. Singapore: Springer, 2019: 377-385. [79] CARLSON A, BETTERIDGE J, WANG R C, et al. Coupled semi-supervised learning for information extraction[C]//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York: ACM, 2010: 101-110. [80] BALCAN M F, BLUM A, YANG K. Co-training and expansion: towards bridging theory and practice[C]//Advances in Neural Information Processing Systems 17, Vancouver, Dec 13-18, 2004: 89-96. [81] ZHANG Z. Weakly-supervised relation classification for information extraction[C]//Proceedings of the 13th ACM International Conference on Information and Knowledge Mana-gement. New York: ACM, 2004: 581-588. [82] ABNEY S. Bootstrapping[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2002: 360-367. [83] CHEN J, JI D, TAN C L, et al. Relation extraction using label propagation based semi-supervised learning[C]//Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2006: 129-136. [84] HOFFMANN R, ZHANG C, LING X, et al. Knowledge-based weak supervision for information extraction of overlapping relations[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2011: 541-550. [85] HASEGAWA T, SEKINE S, GRISHMAN R. Discovering relations among named entities from large corpora[C]//Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2004: 415-422. [86] 秦兵, 刘安安, 刘挺. 无指导的中文开放式实体关系抽取[J]. 计算机研究与发展, 2015, 52(5): 1029-1035. QIN B, LIU A A, LIU T. Unguided Chinese open entity-relationship extraction[J]. Computer Research and Development, 2015, 52(5): 1029-1035. [87] SOARES L B, FITZGERALD N, LING J, et al. Matching the blanks: distributional similarity for relation learning[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1906.03158. [88] YE D, LIN Y, DU J, et al. Coreferential reasoning learning for language representation[EB/OL]. [2023-11-24]. https://arxiv.org/abs/2004.06870. [89] MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing Associations. Stroudsburg: ACL, 2009: 1003-1011. [90] ALFONSECA E, FILIPPOVA K, DELORT J Y, et al. Pattern learning for relation extraction with a hierarchical topic model[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2012: 54-59. [91] ZENG D, DAI Y, LI F, et al. Adversarial learning for distant supervised relation extraction[J]. Computers, Materials & Continua, 2018, 55(1): 121-136. [92] HIRANO T, ASANO H, MATSUO Y, et al. Recognizing relation expression between named entities based on inherent and context-dependent features of relational words[C]//Proceedings of the 23rd International Conference on Computational Linguistics, Beijing, Aug 23-27, 2010: 409-417. [93] SWAMPILLAI K, STEVENSON M. Extracting relations within and across sentences[C]//Proceedings of the 2011 Recent Advances in Natural Language Processing, Hissar, Sep 12-14, 2011: 25-32. [94] GUPTA P, RAJARAM S, SCHüTZE H, et al. Neural relation extraction within and across sentence boundaries[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 6513-6520. [95] TANG H, CAO Y, ZHANG Z, et al. HIN: hierarchical inference network for document-level relation extraction[C]//Advances in Knowledge Discovery and Data Mining: Proceedings of the 24th Pacific-Asia Conference, Singapore, May 11-14, 2020. Cham: Springer, 2020: 197-209. [96] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Trans-lating embeddings for modeling multi-relational data[C]//Advances?in?Neural?Information?Processing?Systems?26, Lake Tahoe, Dec?5-8,?2013: 2787-2795. [97] CHEN Q, ZHU X, LING Z, et al. Enhanced LSTM for natural language inference[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1609.06038. [98] LI J, XU K, LI F, et al. MRN: a locally and globally mention-based reasoning network for document-level relation extraction[C]//Findings of the Association for Computational Linguistics: Association for Computational Linguistics-International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 1359-1370. [99] HUANG Q, ZHU S, FENG Y, et al. Three sentences are all you need: local path enhanced document relation extraction[EB/OL]. [2023-11-24]. https://arxiv.org/abs/2106.01793. [100] HUANG K, QI P, WANG G, et al. Entity and evidence guided document-level relation extraction[C]//Proceedings of the 6th Workshop on Representation Learning for Natural Language Processing. Stroudsburg: ACL, 2021: 307-315. [101] WANG H, FOCKE C, SYLVESTER R, et al. Fine-tune BERT for docRED with two-step process[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1909.11898. [102] YAN L, HAN X, SUN L, et al. From bag of sentences to document: distantly supervised relation extraction via machine reading comprehension[EB/OL]. [2023-11-24]. https://arxiv.org/abs/2012.04334. [103] ZHANG N, CHEN X, XIE X, et al. Document-level relation extraction as semantic segmentation[EB/OL]. [2023-11-24]. https://arxiv.org/abs/2106.03618. [104] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [105] XU B, WANG Q, LYU Y, et al. Entity structure within and throughout: modeling mention dependencies for document-level relation extraction[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2021: 14149-14157. [106] ZHENG W, LIN H, LI Z, et al. An effective neural model extracting document level chemical-induced disease relations from biomedical literature[J]. Journal of Biomedical Informatics, 2018, 83: 1-9. [107] NAN G, GUO Z, SEKULI? I, et al. Reasoning with latent structure refinement for document-level relation extraction[EB/OL]. [2023-11-24]. https://arxiv.org/abs/2005.06312. [108] KIM Y, DENTON C, HOANG L, et al. Structured attention networks[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1702.00887. [109] KOO T, GLOBERSON A, CARRERAS PéREZ X, et al. Structured prediction models via the matrix-tree theorem[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: ACL, 2007: 141-150. [110] ZHOU H, XU Y, YAO W, et al. Global context-enhanced graph convolutional networks for document-level relation extraction[C]//Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Dec 8-13, 2020: 5259-5270. [111] DAI D, REN J, ZENG S, et al. Coarse-to-fine entity representations for document-level relation extraction[EB/OL]. [2023-11-24]. https://arxiv.org/abs/2012.02507. [112] SAHU S K, CHRISTOPOULOU F, MIWA M, et al. Inter-sentence relation extraction with document-level graph convolutional neural network[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1906.04684. [113] ROBERTS A, GAIZAUSKAS R, HEPPLE M, et al. The CLEF corpus: semantic annotation of clinical text[C]//American Medical Informatics Association Annual Symposium Proceedings. Washington: American Medical Informatics Association, 2007: 625. [114] WANG D, HU W, CAO E, et al. Global-to-local neural networks for document-level relation extraction[EB/OL]. [2023-11-24]. https://arxiv.org/abs/2009.10359. [115] CHRISTOPOULOU F, MIWA M, ANANIADOU S. Connecting the dots: document-level neural relation extraction with edge-oriented graphs[EB/OL]. [2023-11-24]. https://arxiv.org/abs/1909.00228. [116] XU W, CHEN K, ZHAO T. Discriminative reasoning for document-level relation extraction[EB/OL]. [2023-11-24]. https://arxiv.org/abs/2106.01562. [117] MAKINO K, MIWA M, SASAKI Y. A neural edge-editing approach for document-level relation graph extraction[EB/OL]. [2023-11-24]. https://arxiv.org/abs/2106.09900. [118] BELTAGY I, PETERS M E, COHAN A. Longformer: the long-document transformer[EB/OL]. [2023-11-24]. https://arxiv.org/abs/2004.05150. |
[1] | 张西硕, 柳林, 王海龙, 苏贵斌, 刘静. 知识图谱中实体关系抽取方法研究[J]. 计算机科学与探索, 2024, 18(3): 574-596. |
[2] | 刘军, 冷芳玲, 吴旺旺, 鲍玉斌. 基于多模态和知识蒸馏的教材知识图谱构建方法[J]. 计算机科学与探索, 2024, 18(11): 2901-2911. |
[3] | 徐慕豪, 葛欣宜, 刘洋, 刘俊秀, 赵耀, 朱振峰. 基于典型相关自编码器的过敏性鼻炎用药推荐[J]. 计算机科学与探索, 2023, 17(2): 419-427. |
[4] | 陈剑南, 杜军平, 薛哲, 寇菲菲. 基于多重注意力的金融事件大数据精准画像[J]. 计算机科学与探索, 2021, 15(7): 1237-1244. |
[5] | 易晨辉,刘梦赤,胡婕. 基于LCA分块算法的大学科研人员信息抽取[J]. 计算机科学与探索, 2016, 10(6): 761-772. |
[6] | 付博,刘挺. 基于跨社交媒体检索的微博消费对象识别[J]. 计算机科学与探索, 2015, 9(10): 1247-1255. |
[7] | 王海涛,张志亮,孙煜华,袁春风,黄宜华. Web信息抽取网页自动浏览导航与集成规则研究[J]. 计算机科学与探索, 2014, 8(9): 1049-1066. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||