计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (2): 345-362.DOI: 10.3778/j.issn.1673-9418.2305057

• 前沿·综述 • 上一篇    下一篇

图像处理中注意力机制综述

祁宣豪,智敏   

  1. 内蒙古师范大学 计算机科学技术学院,呼和浩特 010022
  • 出版日期:2024-02-01 发布日期:2024-02-01

Review of Attention Mechanisms in Image Processing

QI Xuanhao, ZHI Min   

  1. College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
  • Online:2024-02-01 Published:2024-02-01

摘要: 图像处理中的注意力机制已成为深度学习领域中流行且重要的技术之一,因其具有优秀的即插即用便利性,被广泛应用于图像处理领域的各种深度学习模型中。注意力机制通过对输入特征进行加权处理,将模型的注意力集中于最重要的区域,以提升图像处理任务的准确性和性能。首先,将注意力机制的发展过程划分为四个阶段,并在此基础上对通道注意力、空间注意力、通道与空间混合注意力和自注意力四个方面的研究现状及进展进行了回顾与总结;其次,针对注意力机制的核心思想、关键结构和具体实现进行了详细的论述,并进一步总结和归纳所使用模型的优缺点;最后,通过对当前主流的注意力机制进行对比实验和结果分析,讨论了现阶段注意力机制在图像处理领域中存在的问题,并对图像处理领域中注意力机制的未来发展进行展望,为进一步研究提供参考。

关键词: 注意力机制, 核心思想, 关键结构, 图像处理

Abstract: Attention mechanism in image processing has become one of the popular and important techniques in the field of deep learning, and is widely used in various deep learning models in image processing because of its excellent plug-and-play convenience. By weighting the input features, the attention mechanism focuses the model’s attention on the most important regions to improve the accuracy and performance of image processing tasks. Firstly, this paper divides the development process of attention mechanism into four stages, and on this basis, reviews and summarizes the research status and progress of four aspects: channel attention, spatial attention, channel and spatial mixed attention, and self-attention. Secondly, this paper provides a detailed discussion on the core idea, key structure and specific implementation of attention mechanism, and further summarizes the advantages and disadvantages of used models. Finally, by comparing the current mainstream attention mechanisms and analyzing the results, this paper discusses the problems of attention mechanisms in the image processing field at this stage, and provides an outlook on the future development of attention mechanisms in image processing, so as to provide references for further research.

Key words: attention mechanism, core idea, key structures, image processing