[1] CHOENMACKERS S, DAVIS J, ETZIONI O, et al. Learning first-order horn clauses from web text[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Oct 9-11, 2010. Stroudsburg: ACL, 2010: 1088-1098.
[2] GALáRRAGA L, TELIOUDI C, HOSE K, et al. Fast rule mining in ontological knowledge bases with AMIE+[J]. The International Journal on Very Large Data Bases, 2015, 24(6): 707-730.
[3] GALáRRAGA L, TELIOUDI C, HOSE K, et al. AMIE: association rule mining under incomplete evidence in ontological knowledge bases[C]//Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, May 13-17, 2013. New York: ACM, 2013: 413-422.
[4] KOK S, DOMINGOS P. Learning the structure of Markov logic networks[C]//Proceedings of the 22nd International Conference on Machine Learning, Bonn, Aug 7-11, 2005. New York: ACM, 2005: 441-448.
[5] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Trans-lating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-10, 2013. Red Hook: Curran Associates Inc., 2013: 2787-2795.
[6] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: OmniPress, 2011: 809-816.
[7] YANG B, YIH W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 2015 International Conference on Learning Representations, San Diego, May 7-9, 2015.
[8] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, Jun 19-24, 2016: 2071-2080.
[9] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 1811-1818.
[10] DAI Q N, TU D N, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 327-333.
[11] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 3009-3016.
[12] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on the Semantic Web, Heraklion, Jun 3-7, 2018. Cham: Springer, 2018: 593-607.
[13] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention based embeddings for relation prediction in knowledge graphs[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 4710-4723.
[14] VASHISHTH S, SANYAL S, NITIN N, et al. Composition-based multi-relational graph convolutional networks[C]//Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020.
[15] JAISWAL A, BABU A R, ZADEH M Z, et al. A survey on contrastive self-supervised learning[J]. Technologies, 2020, 9(1): 2.
[16] VELIC KOVIC P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[C]//Proceeding of the 2019 International Conference on Learning Representations, New Orleans, May 6-9, 2019.
[17] YOU Y N, CHEN T L, SUI Y D, et al. Graph contrastive learning with augmentations[C]//Advances in Neural Information Processing Systems 33, Vancouver, Dec 6-12, 2020. Red Hook: Curran Associates Inc., 2020: 5812-5823.
[18] HASSANI K, AHMADI A H K. Contrastive multi-view representation learning on graphs[C]//Proceedings of the 37th International Conference on Machine Learning, Jul 13-18, 2020: 4116-4126.
[19] DUVENAUD D K, MACLAURIN D, IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[C]//Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015. Cambridge:MIT Press, 2015: 2224-2232.
[20] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 1263-1272.
[21] ATWOOD J, TOWSLEY D. Diffusion-convolutional neural networks[C]//Advances in Neural Information Processing Systems 29, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates Inc., 2016: 2001-2009.
[22] SIMONOVSKY M, KOMODAKIS N. Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//Proceedings of the 2017 Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 29-38.
[23] SOHN K. Improved deep metric learning with multi-class n-pair loss objective[C]//Advances?in?Neural?Information?Processing?Systems?29, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates Inc., 2016: 1857-1865.
[24] WANG F, LIU H. Understanding the behaviour of contrastive loss[C]//Proceeding of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 2495-2504.
[25] TOUTANOVA K,CHEN D Q, PANTEL P, et al. Representing text for joint embedding of text and knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 1499-1509.
[26] BOLLACKER K D, EVANS C, PARITOSH P K, et al. FreeBase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM,2008: 1247-1250.
[27] BALAZEVIC I, ALLEN C, TIMOTHY M. Hospedales: multi-relational Poincaré graph embeddings[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019. Red Hook: Curran Associates Inc., 2019: 4465-4475.
[28] BANSAL T, JUAN D C, RAVI S,et al. A2N: attending to neighbors for knowledge graph inference[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 4387-4392.
[29] ZHANG Z Q, WANG J, YE J P, et al. Rethinking graph convolutional networks in knowledge graph completion[C]//Proceedings of the ACM Web Conference 2022, Lyon, Apr 25-29, 2022. New York: ACM, 2022: 798-807.
[30] NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 1955-1961. |