[1] 中国互联网络信息中心. 第52次《中国互联网络发展状况统计报告》[EB/OL]. [2023-08-28]. https://www.cnnic.cn/n4/2023/0828/c88-10829.html.
China Internet Network Information Center. The 52nd statistical report on China’s Internet development[EB/OL].[2023-08-28]. https://www.cnnic.cn/n4/2023/0828/c88-10829.html.
[2] 祁凯, 李昕. 基于S3EIR模型的政务短视频网民情绪感染路径研究[J]. 情报理论与实践, 2022, 45(10): 164-168.
QI K, LI X. Research on propagation path about netizens’ emotions of government affairs short video based on S3EIR model[J]. Information Studies: Theory & Application, 2022, 45(10): 164-168.
[3] 孙靖超. 基于优化深度双向自编码网络的舆情情感识别研究[J]. 情报杂志, 2020, 39(6): 159-163.
SUN J C. Sentiment analysis of network public opinion based on optimized bidirectional encoder representations from transformers[J]. Journal of Intelligence, 2020, 39(6): 159-163.
[4] 潘苏楠, 邓三鸿, 王蔚萍. 融合母评论文本信息的评论短文本情感分析研究——以短视频评论文本为例[J]. 情报探索, 2023(4): 1-7.
PAN S N, DENG S H, WANG W P. Research on the short text sentiment analysis with the text of parent-comment: a case study of short video comments[J]. Information Research, 2023(4): 1-7.
[5] SHI W, ZHANG J, HE S Y. Understanding public opinions on Chinese short video platform by multimodal sentiment analysis using deep learning based techniques[J/OL]. Kybernetes [2023-09-12]. https://www.emerald.com/insight/content/ doi/10.1108/K-04-2023-0723/full/html.
[6] 王婷, 杨文忠. 文本情感分析方法研究综述[J]. 计算机工程与应用, 2021, 57(12): 11-24.
WANG T, YANG W Z. Review of text sentiment analysis methods[J]. Computer Engineering and Applications, 2021, 57(12): 11-24.
[7] 周知, 李名子, 崔旭. 基于领域情感词典的用户生成内容有用性评价研究——以豆瓣读书为例[J]. 情报理论与实践, 2022, 45(1): 86-92.
ZHOU Z, LI M Z, CUI X. Research on helpfulness evaluation of user generate content based on domain sentiment lexicon: taking Douban reading as an example[J]. Information Studies: Theory & Application, 2022, 45(1): 86-92.
[8] 柳位平, 朱艳辉, 栗春亮, 等. 中文基础情感词词典构建方法研究[J]. 计算机应用, 2009, 29(10): 2875-2877.
LIU W P, ZHU Y H, LI C L, et al. Research on building Chinese basic semantic lexicon[J]. Journal of Computer Applications, 2009, 29(10): 2875-2877.
[9] WU L, MORSTATTER F, LIU H. SlangSD: building, expanding and using a sentiment dictionary of slang words for short-text sentiment classification[J]. Language Resources and Evaluation, 2018, 45(2): 196-211.
[10] ZHANG S, WEI Z, WANG Y, et al. Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary[J]. Future Generation Computer Systems, 2018, 81: 395-403.
[11] NEETHU M S, RAJASREE R. Sentiment analysis in Twitter using machine learning techniques[C]//Proceedings of the 4th International Conference on Computing, Jul 4-6, 2013. Piscataway: IEEE, 2013: 450-454.
[12] PANG B, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques[C]//Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing, Philadelphia, Jul 6-7, 2002. New York: ACM, 2002: 79-86.
[13] JADAV B M, VAGHELA V B. Sentiment analysis using support vector machine based on feature selection and semantic analysis[J]. International Journal of Computer Applications, 2016, 146(13): 26-30.
[14] DEY L, CHAKRABORTY S, BISWAS A, et al. Sentiment analysis of review datasets using naive Bayes and K-NN classifier[J]. International Journal of Information Engineering and Electronic Business, 2016, 8(4): 54-62.
[15] 冯兴杰, 张志伟, 史金钏. 基于卷积神经网络和注意力模型的文本情感分析[J]. 计算机应用研究, 2018, 35(5): 1434-1436.
FENG X J, ZHANG Z W, SHI J C. Text sentiment analysis based on convolutional neural networks and attention model[J]. Application Research of Computers, 2018, 35(5): 1434-1436.
[16] TANG D, QIN B, LIU T. Document modeling with gated recurrent neural network for sentiment classification[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1422- 1432.
[17] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[18] 刘思琴, 冯胥睿瑞. 基于BERT的文本情感分析[J]. 信息安全研究, 2020, 6(3): 220-227.
LIU S Q, FENG X R R. Text sentiment analysis based on BERT[J]. Journal of Information Security Research, 2020, 6(3): 220-227.
[19] 方英兰, 孙吉祥, 韩兵. 基于BERT的文本情感分析方法的研究[J]. 信息技术与信息化, 2020(2): 108-111.
FANG Y L, SUN J X, HAN B. Research on text emotion analysis method based on BERT[J]. Information Technology and Informatization, 2020(2): 108-111.
[20] 科猫网. 抖音用户有多少(抖音2021年数据分析)[EB/OL]. [2023-09-12]. http://news.kemaowang.org.cn/n/315774.html.
Kemao Net. How many Douyin users are there (data analysis of Douyin in 2021) [EB/OL]. [2023-09-12]. http://news.kemaowang.org.cn/n/315774.html.
[21] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.
LI H. Statistical learning methods[M]. Beijing: Tsinghua University Press, 2012.
[22] 罗婉丽, 张磊. 结合拓扑势与TextRank算法的关键词提取方法[J]. 计算机应用与软件, 2022, 39(1): 334-338.
LUO W L, ZHANG L. Keywords extraction method combining topological potential and TextRank algorithm[J]. Computer Applications and Software, 2022, 39(1): 334-338.
[23] 龙玥, 刘译阳. 新媒体环境下高校负面网络舆情传播特征和路径研究[J]. 情报科学, 2019, 37(12): 134-139.
LONG Y, LIU Y Y. Propagation characteristics and paths of negative network public opinions in colleges under the new media environment[J]. Information Science, 2019, 37(12): 134-139.
[24] 王国华, 曾润喜. 解码网络舆情[M]. 武汉: 华中科技大学出版社, 2006.
WANG G H, ZENG R X. Explore Internet public opinion[M]. Wuhan: Huazhong University of Science & Techonlogy Press, 2006.
[25] 李淑娜, 郭洪波. 网络舆情演变的情绪机制及干预策略研究[J]. 山东社会科学, 2022(8): 162-168.
LI S N, GUO H B. Research on the emotional mechanism and intervention strategies of the evolution of online public opinion[J]. Shandong Social Sciences, 2022(8): 162-168. |