[1] LOPS P, GEMMIS M, SEMERARO G. Content-based recommender systems: state of the art and trends[M]//Recommender Systems Handbook. Berlin, Heidelberg: Springer, 2011: 73-105.
[2] SCHAFER J B, FRANKOWIKI D, HERLOCKER J, et al. Collaborative filtering recommender systems[M]//The Adaptive Web. Berlin, Heidelberg: Springer, 2007: 291-324.
[3] 于蒙, 何文涛, 周绪川, 等. 推荐系统综述[J]. 计算机应用, 2022, 42(6): 1898-1913.
YU M, HE W T, ZHOU X C, et al. Review of recommendation systems[J]. Journal of Computer Applications, 2022, 42(6):1898-1913.
[4] ZHANG S, YAO L N, SUN A X, et al. Deep learning based recommender system: a survey and new perspectives[J]. ACM Computing Surveys, 2020, 52(1): 1-38.
[5] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017: 173-182.
[6] GUO H, TANG R, YE Y, et al. DeepFM: a factorization-machine based neural network for CTR prediction[J]. arXiv:1703.04247, 2017.
[7] GAO C, ZHENG Y, LI N, et al. Graph neural networks for recommender systems: challenges, methods, and directions[J]. arXiv:2109.12843, 2021.
[8] 朱志国, 李伟玥, 姜盼, 等. 图神经网络会话推荐系统综述[J]. 计算机工程与应用, 2023, 59(5): 55-69.
ZHU Z G, LI W Y, JIANG P, et al. Survey of graph neural networks in session recommender system[J]. Computer Engineering and Applications, 2023, 59(5): 55-69.
[9] XIA X, YIN H, YU J, et al. Self-supervised graph co-training for session-based recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 2180-2190.
[10] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web, North Carolina, Apr 26-30, 2010. New York: ACM, 2010: 811-820.
[11] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web, Hong Kong, China, May 1-5, 2001: 285-295.
[12] WANG M, REN P, MEI L, et al. A collaborative session-based recommendation approach with parallel memory modules[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jun 28-Jul 1, 2009. New York: ACM, 2019: 345-354.
[13] LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 1419-1428.
[14] LIU Q, ZENG Y, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1831-1839.
[15] KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining, Singapore, Nov 17-20, 2018. Piscataway: IEEE, 2018: 197-206.
[16] WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence, Hawaii, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 346-353.
[17] XU C, ZHAO P, LIU Y, et al. Graph contextualized self-attention network for session-based recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 3940-3946.
[18] QIU R, LI J, HUANG Z, et al. Rethinking the item order in session-based recommendation with graph neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 579-588.
[19] 郑楠, 过弋, 李智强, 等. 融合交互注意力和参数自适应的商品会话推荐[J]. 中文信息学报, 2022, 36(11): 131-139.
ZHENG N, GUO Y, LI Z Q, et al. Session-based commodity recommendation through interactive attention and parameter self-adaption[J]. Journal of Chinese Information Processing, 2022, 36(11): 131-139.
[20] BACHMAN P, HJELM R D, BUCHWALTER W. Learning representations by maximizing mutual information across views[C]//Advances?in?Neural?Information?Processing?Systems 32,?Vancouver, Dec?8-14,?2019: 15535-15545.
[21] HASSANI K, KHASAHMADIA H. Contrastive multi-view representation learning on graphs[C]//Proceedings of the 37th International Conference on Machine Learning, Jul 13-18, 2020: 4116-4126.
[22] ZHOU K, WANG H, ZHAO W X, et al. S3-Rec: self-supervised learning for sequential recommendation with mutual information maximization[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1893-1902.
[23] XIA X, YIN H, YU J, et al. Self-supervised hypergraph convolutional networks for session-based recommendation[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Columbia, Feb 2-9, 2021. Menlo Park: AAAI,2021: 4503-4511.
[24] WANG Z, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, Jul 25-30, 2020. New York: ACM, 2020: 169-178.
[25] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, Jul 25-30, 2020. New York: ACM, 2020: 639-648.
[26] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[27] WANG S, CAO L, WANG Y, et al. A survey on session-based recommender systems[J]. ACM Computing Surveys, 2021, 54(7): 1-38.
[28] OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv:1807.03748, 2018.
[29] LI A, CHENG Z, LIU F, et al. Disentangled graph neural networks for session-based recommendation[J]. arXiv:2201. 03482, 2022. |