[1] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[2] CHEN W Y, LIU Y C, KIRA Z, et al. A closer look at few-shot classification[C]//Proceedings of the 2018 International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018.
[3] LIU B, CAO Y, LIN Y, et al. Negative margin matters: under-standing margin in few-shot classification[C]//LNCS 12349: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 438-455.
[4] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec 5-12, 2016: 3637-3645.
[5] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017: 4080-4090.
[6] SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 1199-1208.
[7] CHEN Y, LIU Z, XU H, et al. Meta-baseline: exploring simple meta-learning for few-shot learning[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 9042-9051.
[8] 曾武, 毛国君. 多尺度特征聚合的小样本学习方法[J]. 计算机工程与应用, 2023, 59(15): 151-159.
ZENG W, MAO G J. Few-shot learning method for multi-scale feature aggregation[J]. Computer Engineering and Appli-cations, 2023, 59(15): 151-159.
[9] KANG D, KWON H, MIN J, et al. Relational embedding for few-shot classification[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 8802-8813.
[10] XIE J, LONG F, LV J, et al. Joint distribution matters: deep Brownian distance covariance for few-shot classification[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-22, 2022. Piscataway: IEEE, 2022: 7962-7971.
[11] LIU Y, ZHANG W, XIANG C, et al. Learning to affiliate: mutual centralized learning for few-shot classification[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-22, 2022. Piscataway: IEEE, 2022: 14391-14400.
[12] 刘鑫, 周凯锐, 何玉琳, 等. 基于度量的小样本分类方法研究综述[J]. 模式识别与人工智能, 2021, 34(10): 909-923.
LIU X, ZHOU K R, HE Y L, et al. Survey of metric-based few-shot classification[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(10): 909-923.
[13] 安胜彪, 郭昱岐, 白宇, 等. 小样本图像分类研究综述[J]. 计算机科学与探索, 2023, 17(3): 511-532.
AN S B, GUO Y Q, BAI Y, et al. Survey of few-shot image classification research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532.
[14] REN M, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[C]//Proceedings of the 2018 International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018.
[15] HOU R, CHANG H, MA B, et al. Cross attention network for few-shot classification[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Dec 8-14, 2019: 4003-4014.
[16] LIU J, SONG L, QIN Y. Prototype rectification for few-shot learning[C]//LNCS 12349: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 741-756.
[17] LIU Y, LEE J, PARK M, et al. Learning to propagate labels: transductive propagation network for few-shot learning[C]//Proceedings of the 2019 International Conference on Learning Representations, New Orleans, May 6-9, 2019.
[18] PAN L, LIU W. Transductive graph-attention network for few-shot classification[C]//Proceedings of the 2022 16th IEEE International Conference on Signal Processing, Beijing, Oct 21, 2022. Piscataway: IEEE, 2022: 190-195.
[19] QIAO L, SHI Y, LI J, et al. Transductive episodic-wise adap-tive metric for few-shot learning[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 3603-3612.
[20] GAO Z, WU Y, JIA Y, et al. Curvature generation in curved spaces for few-shot learning[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 8691-8700.
[21] VEILLEUX O, BOUDIAF M, PIANTANIDA P, et al. Realistic evaluation of transductive few-shot learning[C]//Advances?in?Neural?Information?Processing?Systems?34,?Dec?6-14,?2021: 9290-9302.
[22] FAN Q, PEI W, TAI Y W, et al. Self-support few-shot semantic segmentation[C]//LNCS 13679: Proceedings of the 17th European Conference on Computer Vision, Tel Aviv, Oct 23-27, 2022. Cham: Springer, 2022: 701-719.
[23] BERTINETTO L, HENRIQUES J F, TORR P, et al. Meta-learning with differentiable closed-form solvers[C]//Procee-dings of the 2019 International Conference on Learning Representations, New Orleans, May 6-9, 2019.
[24] 李祥霞, 吉晓慧, 李彬. 细粒度图像分类的深度学习方法[J]. 计算机科学与探索, 2021, 15(10): 1830-1842.
LI X X, JI X H, LI B. Deep learning method for fine-grained image categorization[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1830-1842.
[25] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[26] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2921-2929. |