[1] HYUNA S, JACQUES F, REBECCA L S, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
[2] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[3] 沈怀艳, 吴云. 基于MSFA-Net的肝脏CT图像分割方法[J]. 计算机科学与探索, 2023, 17(3): 646-656.
SHEN H Y, WU Y. Liver CT image segmentation method based on MSFA-Net[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 646-656.
[4] 宋姝洁, 崔振超, 陈丽萍, 等. 多特征融合神经网络的眼底血管分割算法[J]. 计算机科学与探索, 2021, 15(12): 2401-2412.
SONG S J, CUI Z C, CHEN L P, et al. Fundus vessel segmentation algorithm based on multi-feature fusion neural network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2401-2412.
[5] 谢娟英, 张凯云. XR-MSF-Unet: 新冠肺炎肺部CT图像自动分割模型[J]. 计算机科学与探索, 2022, 16(8): 1850-1864.
XIE J Y, ZHANG K Y. XR-MSF-Unet: automatic segmentation model for COVID-19 lung CT images[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1850-1864.
[6] MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 2016 4th International Conference on 3D Vision, Stanford, Oct 25-28, 2016. Washington: IEEE Computer Society, 2016: 565-571.
[7] JAFARI M H, NASR-ESFAHANI E, KARIMI N, et al. Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12: 1021-1030.
[8] YUAN Y, CHAO M, YEH-CHI L. Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance[J]. IEEE Transactions on Medical Imaging, 2017, 36(9): 1876-1886.
[9] WANG Y J, SIMON S, JAHOW J, et al. Skin lesion segmentation using atrous convolution via DeepLab v3[J]. arXiv:1807.08891, 2018.
[10] AZAD R, ASADI-AGHBOLAGHI M, FATHY M, et al. Bi-directional ConvLSTM U-Net with densley connected convolutions[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-28,2019. Piscataway: IEEE, 2019: 406-415.
[11] SONG H, WANG W, ZHAO S, et al. Pyramid dilated deeper ConvLSTM for video salient object detection[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 744-760.
[12] JHA D, RIEGLER M A, JOHANSEN D, et al. DoubleU-Net: a deep convolutional neural network for medical image segmentation[C]//Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems, Jul 28-30, 2022. Piscataway: IEEE, 2020: 558-564.
[13] PENNSI A, BLOISI D D, SURIANI V, et al. Skin lesion area segmentation using attention squeeze U-Net for embedded devices[J]. Journal of Digital Imaging, 2022, 35(5): 1217-1230.
[14] IBTEHAZ N, RAHMAN M S. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2020, 121: 74-87.
[15] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv:1409.0473, 2014.
[16] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Advances in Neural Information Processing Systems 27, Montreal, Dec 8-13, 2014: 3104-3112.
[17] OKTAY O, SCHLEMPER J, SCHAAP M, et al. Attention U-Net: learning where to look for the pancreas[J]. Medical Image Analysis, 2019, 53: 197-207.
[18] ALOM M Z, HASAN M, YAKOPCIC C, et al. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation[J]. Journal of Medical Imaging, 2019, 6(1): 6-14.
[19] TANG Y, WANG X, HARRISON A P, et al. Attention-guided curriculum learning for weakly supervised classification and localization of thoracic diseases on chest radiographs[C]//Proceedings of the 9th International Workshop on Machine Learning in Medical Imaging, Granada, Sep 16, 2018.Cham: Springer, 2018: 249-258.
[20] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J].arXiv:1706.05587, 2017.
[21] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[22] WANG Q, WU B, ZHU P, et al. Supplementary material for ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11534-11542.
[23] 王宇航, 周永霞, 吴良武. 基于高斯函数的池化算法[J]. 计算机应用, 2022, 42(9): 2800-2806.
WANG Y H, ZHOU Y X, WU L W. Pooling algorithm based on gaussian function[J]. Journal of Computer Applications, 2022, 42(9): 2800-2806.
[24] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 7132-7141.
[25] NALEPA J, MARCINKIEWICZ M, KAWULOK M. Data augmentation for brain-tumor segmentation: a review[J]. Frontiers in Computational Neuroscience, 2019, 13: 83.
[26] MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging, 2014, 34(10): 1993-2024.
[27] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKSHS N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Sep 20, 2018. Cham: Springer, 2018: 3-11.
[28] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 833-851. |