[1] GAMBARDELLA L M, DORIGO M. Solving symmetric and asymmetric TSPs by ant colonies[C]//Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, Nayoya, May 20-22, 1996. Piscataway: IEEE, 2002: 622-627.
[2] DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 1996, 26(1): 29-41.
[3] DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
[4] STUTZLE T, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer Systems, 2000, 16(8): 889-914.
[5] 雷超帆, 赵华东, 江南. 融合粒子群与蚁群算法的机器人路径规划[J]. 重庆理工大学学报(自然科学), 2020, 34(1): 235-241.
LEI C F, ZHAO H D, JIANG N. Robot path planning based on particle swarm optimization and ant colony fusion algorithm[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(1): 235-241.
[6] 贾进章, 李雪娇. 基于遗传-蚁群算法的单层建筑火灾疏散路径规划研究[J]. 中国安全生产科学技术, 2020, 16(6): 122-126.
JIA J Z, LI X J. Research on evacuation path planning of single-storey building fire based on genetic ant colony algorithm[J]. Journal of Safety Science and Technology, 2020, 16(6): 122-126.
[7] 曹建秋, 徐鹏, 张广言. 基于贪心策略下混合蚁群算法的无人机航迹规划[J]. 重庆交通大学学报(自然科学版), 2021, 40(9): 9-16.
CAO J Q, XU P, ZHANG G Y. Path planning of UAV based on hybrid ant colony algorithm under greedy strategy[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2021, 40(9): 9-16.
[8] 张硕航, 郭改枝, 张朋. K-Means聚类下的改进蚁群算法优化TSP问题[J]. 内蒙古大学学报(自然科学版), 2021, 52(6): 609-616.
ZHANG S H, GUO G Z, ZHANG P. Improved ant colony algorithm based on K-Means clustering to optimize TSP problem[J]. Journal of Inner Mongolia University (Natural Science Edition), 2021, 52(6): 609-616.
[9] ZHANG L Y, ZHANG R X. Research on UAV cloud control system based on ant colony algorithm[J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 805-811.
[10] 绳红强, 黄海英, 崔毅刚. 基于A*蚁群融合算法的避障路径规划研究[J]. 机电工程技术, 2022, 51(7): 45-49.
SHENG H Q, HUANG H Y, CUI Y G. Research on obstacle avoidance path planning based on A* ant colony fusion algorithm[J]. Mechanical and Electrical Engineering Technology, 2022, 51(7): 45-49.
[11] 徐劲力, 柳佳, 司马立萱. 多因素A*蚁群算法的机器人路径规划[J]. 组合机床与自动化加工技术, 2022(8): 21-25.
XU J L, LIU J, SIMA L X. A research on obstacle avoidance path planning based on ant colony algorithm with A* heuristic[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(8): 21-25.
[12] 梁彪, 严昌龙. 一种求解CVRP问题的遗传蚁群融合算法[J]. 中国物流与采购, 2021(24): 34-35.
LIANG B, YAN C L. A genetic ant colony fusion algorithm for solving CVRP problem[J]. China Logistics & Purchasing, 2021(24): 34-35.
[13] AKHAND M A H, AYON S I, SHAHRIYAR S A, et al. Discrete spider monkey optimization for travelling salesman problem[J]. Applied Soft Computing, 2020, 86: 105887.
[14] 陈孟辉, 刘俊麟, 徐健锋, 等. 求解旅行商问题的多样化搜索帝国竞争算法[J]. 计算机应用, 2019, 39(10): 2992-2996.
CHEN M H, LIU J L, XU J F, et al. Imperialist competitive algorithm based on multiple search stratrgy for solving travel salesman problem[J]. Journal of Computer Applications,2019, 39(10): 2992-2996.
[15] 赵天亮, 张小俊, 张明路, 等. 基于改进融合蚁群算法的机器人路径规划方法研究[J]. 制造业自动化, 2022, 44(5): 185-190.
ZHAO T L, ZHANG X J, ZHANG M L, et al. Research on robot path planning method based on improved fusion ant colony algorithm[J]. Manufacturing Automation, 2022, 44(5): 185-190.
[16] 吴立胜, 游晓明, 刘升. 结合邻域耦合机制与双边滤波的双蚁群算法[J]. 计算机科学与探索, 2023, 17(9): 2092-2106.
WU L S, YOU X M, LIU S. Dual ant colony optimization with neighborhood coupling mechanism and bilateral filtering[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2092-2106.
[17] 郭文强, 杜正毅. 融合动态邻域搜索机制的蚁群系统算法[J]. 自动化与信息工程, 2022, 43(2): 15-22.
GUO W Q, DU Z Y. Ant colony system algorithm combining dynamic neighborhood search mechanism[J]. Automation and Information Engineering, 2022, 43(2): 15-22.
[18] 马世轩, 游晓明, 刘升. 动态信息素更新和路径奖惩的蚁群算法[J]. 计算机工程与应用, 2023, 59(4): 64-76.
MA S X, YOU X M, LIU S. Ant colony algorithm based on dynamic pheromone update and path rewards and punishments[J]. Computer Engineering and Applications, 2023, 59(4): 64-76.
[19] 纪慧颖, 潘明海, 张元时, 等. 基于遗传-蚁群融合算法的干扰资源分配方法[J]. 系统工程与电子技术, 2023, 45(7): 2098-2107.
JI H Y, PAN M H, ZHANG Y S, et al. Method of jamming resource distribution based on genetic-ant colony fusion algorithm[J]. Systems Engineering and Electronics, 2023, 45(7): 2098-2107.
[20] 李晗珂, 游晓明, 刘升. 融合熵聚类和增广变邻策略的蚁群优化算法[J]. 计算机集成制造系统, 2024, 30(6): 2115-2129.
LI H K, YOU X M, LIU S. Ant colony optimization algorithm combining entropy clustering and augmented neighboring strategy[J]. Computer Integrated Manufacturing Systems, 2024, 30(6): 2115-2129. |