
计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (10): 2615-2634.DOI: 10.3778/j.issn.1673-9418.2502059
蒋润泽,刘静,马金刚,郭振,李明
出版日期:2025-10-01
发布日期:2025-09-30
JIANG Runze, LIU Jing, MA Jingang, GUO Zhen, LI Ming
Online:2025-10-01
Published:2025-09-30
摘要: 黑色素瘤作为皮肤癌中最具致命性的类型,其早期准确诊断对提高患者生存率至关重要。近年来,深度学习技术在黑色素瘤分类诊断领域展现出巨大潜力,为临床诊断提供了新的技术支撑。系统回顾了深度学习在黑色素瘤分类中的研究进展,重点关注卷积神经网络、Transformer、生成对抗网络和循环神经网络等核心方法的技术演进及其临床应用。归纳了HAM10000、ISIC、PH2等权威数据集的特性及其在算法开发中的价值,详细分析了不同数据集的预处理方法和增强策略,为模型训练提供了高质量的数据基础;深入分析了不同深度学习模型的改进策略,包括网络架构优化、多模态特征融合及数据不平衡处理等;还探讨了迁移学习、集成学习等多元学习策略在提升模型性能中的作用。总结了当前技术的局限性,并对未来研究方向进行了展望,重点包括多模态大模型、联邦学习及轻量化技术的应用前景。
蒋润泽, 刘静, 马金刚, 郭振, 李明. 深度学习在黑色素瘤分类诊断中的研究进展[J]. 计算机科学与探索, 2025, 19(10): 2615-2634.
JIANG Runze, LIU Jing, MA Jingang, GUO Zhen, LI Ming. Research Progress of Deep Learning in Classification and Diagnosis of Melanoma[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2615-2634.
| [1] TRIPP M K, WATSON M, BALK S J, et al. State of the science on prevention and screening to reduce melanoma incidence and mortality: the time is now[J]. CA: A Cancer Journal for Clinicians, 2016, 66(6): 460-480. [2] BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2024, 74(3): 229-263. [3] DAVIS L E, SHALIN S C, TACKETT A J. Current state of melanoma diagnosis and treatment[J]. Cancer Biology & Therapy, 2019, 20(11): 1366-1379. [4] MCAFEE W J, MORRIS C G, MENDENHALL C M, et al. Merkel cell carcinoma[J].Cancer, 2010, 104(8):1761-1764. [5] GRABOWSKI J, SALTZSTEIN S L, SADLER G R, et al. A comparison of merkel cell carcinoma and melanoma: results from the California cancer registry[J]. Clinical Medicine Oncology, 2008, 2: 327-333. [6] GRAY-SCHOPFER V, WELLBROCK C, MARAIS R. Melanoma biology and new targeted therapy[J]. Nature, 2007, 445(7130): 851-857. [7] JONES S, HENRY V, STRONG E, et al. Clinical impact and accuracy of shave biopsy for initial diagnosis of cutaneous melanoma[J]. Journal of Surgical Research, 2023, 286: 35-40. [8] IBRAHIM T F, SETIAWARDHANA, SIGIT R. Support vector machine: melanoma skin cancer diagnosis based on dermoscopy image[C]//Proceedings of the 2022 International Electronics Symposium. Piscataway: IEEE, 2022: 540-545. [9] ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. [10] MAHMOUD N M, SOLIMAN A M. Early automated detection system for skin cancer diagnosis using artificial intelligent techniques[J]. Scientific Reports, 2024, 14(1): 9749. [11] HAENSSLE H A, FINK C, SCHNEIDERBAUER R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists[J]. Annals of Oncology, 2018, 29(8): 1836-1842. [12] SIVAKUMAR M S, LEO L M, GURUMEKALA T, et al. Deep learning in skin lesion analysis for malignant melanoma cancer identification[J]. Multimedia Tools and Applications, 2024, 83(6): 17833-17853. [13] RAMESH T, VIGNEASH L, SAMRAJ S, et al. A comprehensive evaluation of deep learning based melanoma detection and classification scheme[C]//Proceedings of the 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics. Piscataway: IEEE, 2024: 1-6. [14] 孔祥勇. 基于深度学习的黑色素瘤分类问题的研究[D]. 杭州: 浙江工业大学, 2019. KONG X Y. Research on classification of melanoma based on deep Learning[D]. Hangzhou: Zhejiang University of Tech-nology, 2019. [15] LIU S, FAN Y S, LI K W, et al. Integration of lncRNAs, protein-coding genes and pathology images for detecting metastatic melanoma[J]. Genes, 2022, 13(10): 1916. [16] ZHOU S L, ZHANG L Q, ZHAO X K, et al. Clinicopathological characterization of ten patients with primary malignant melanoma of the esophagus and literature review[J]. World Journal of Gastrointestinal Oncology, 2022, 14(9): 1739-1757. [17] GLANZ K, VOLPICELLI K, KANETSKY P A, et al. Melanoma genetic testing, counseling, and adherence to skin cancer prevention and detection behaviors[J]. Cancer Epidemiology, Biomarkers & Prevention, 2013, 22(4): 607-614. [18] BOSSARD C, SALHI Y, QUEREUX G, et al. 1170P survival outcome prediction of primary melanoma tumours from histology images using deep learning[J]. Annals of Oncology, 2023, 34: S696. [19] HE M Y, HUANG J C. Melanoma incidence by sex, indoor tanning, and body site[J]. JAMA Internal Medicine, 2023, 183(4): 390. [20] YOU C X, ZHOU C Z, YOU Z X, et al. Correlation between homologous recombination repair gene mutation and immunotherapy efficacy in patients with advanced melanoma[J]. Journal of Clinical Oncology, 2022, 40: e21551. [21] SWITZER B, SAVAGE D J, SONG J M, et al. Patterns in progression from early stage melanoma to late stage melanoma: implications for survivorship follow up[J]. Journal of Clinical Oncology, 2020, 38: e24055. [22] HANNIFORD D, ULLOA-MORALES A, KARZ A, et al. Epigenetic silencing of CDR1as drives IGF2BP3-mediated melanoma invasion and metastasis[J]. Cancer Cell, 2020, 37(1): 55-70. [23] 常炳国, 石华龙, 常雨馨. 基于深度学习的黑色素瘤智能诊断多模型算法[J]. 计算机科学, 2022, 49(S1): 22-26. CHANG B G, SHI H L, CHANG Y X. Multi-model algorithm for intelligent diagnosis of melanoma based on deep learning[J]. Computer Science, 2022, 49(S1): 22-26. [24] TSCHANDL P, ROSENDAHL C, KITTLER H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Scientific Data, 2018, 5: 180161. [25] MENDON?A T, FERREIRA P M, MARQUES J S, et al. PH2 - a dermoscopic image database for research and benchmarking[C]//Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2013: 5437-5440. [26] CODELLA N C F, GUTMAN D, CELEBI M E, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)[C]//Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2018: 168-172. [27] MARCHETTI M A, CODELLA N C F, DUSZA S W, et al. Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images[J]. Journal of the American Academy of Dermatology, 2018, 78(2): 270-277. [28] MUKHERJEE S, ADHIKARI A, ROY M. Malignant melanoma identification using best visually imperceptible features from dermofit dataset[C]//Advances in Computer, Communication and Control. Singapore: Springer, 2019: 263-274. [29] COMBALIA M, CODELLA N C F, ROTEMBERG V, et al. BCN20000: dermoscopic lesions in the wild[EB/OL]. [2024-12-06]. https://arxiv.org/abs/1908.02288. [30] PACHECO A G C, LIMA G R, SALOM?O A S, et al. PAD-UFES-20: a skin lesion dataset composed of patient data and clinical images collected from smartphones[J]. Data in Brief, 2020, 32: 106221. [31] MABROUK M S, SAYED A Y, AFIFI H M, et al. Fully automated approach for early detection of pigmented skin lesion diagnosis using ABCD[J]. Journal of Healthcare Informatics Research, 2020, 4(2): 151-173. [32] MUKHERJEE S, ADHIKARI A, ROY M. Malignant melanoma classification using cross-platform dataset with deep learning CNN architecture[C]//Advances in Intelligent Systems and Computing 922: Recent Trends in Signal and Image Processing. Singapore: Springer, 2019: 31-41. [33] KAUR R, GHOLAMHOSSEINI H, SINHA R, et al. Melanoma classification using a novel deep convolutional neural network with dermoscopic images[J]. Sensors, 2022, 22(3): 1134. [34] VATTIKUTI L, CHINTALA S V, DOLA S K, et al. Melanoma skin cancer detection and classification using deep learning[J]. International Journal for Research in Applied Science and Engineering Technology, 2023, 11(9): 1596-1601. [35] JAYABHARATHY K, VIJAYALAKSHMI K. Detection and classification of malignant melanoma and benign skin lesion using CNN[C]//Proceedings of the 2022 International Conference on Smart Technologies and Systems for Next Generation Computing. Piscataway: IEEE, 2022: 1-4. [36] ZHANG W Q, PATTERSON N H, VERBEECK N, et al. Multimodal MALDI imaging mass spectrometry for improved diagnosis of melanoma[J]. PLoS One, 2024, 19(5): e0304709. [37] AWHAD R, BARODE D, KAWATHEKAR S. Detection of melanoma skin cancer in early stages using CNN classification[R]. EasyChair, 2022. [38] TANNA R, SHARMA T. Binary classification of melanoma skin cancer using SVM and CNN[C]//Proceedings of the 2021 International Conference on Artificial Intelligence and Machine Vision. Piscataway: IEEE, 2022: 1-4. [39] GURUNG S, GAO Y R. Classification of melanoma (skin cancer) using convolutional neural network[C]//Proceedings of the 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications. Piscataway: IEEE, 2021: 1-8. [40] ADEPU A K, SAHAYAM S, JAYARAMAN U, et al. Melanoma classification from dermatoscopy images using knowledge distillation for highly imbalanced data[J]. Computers in Biology and Medicine, 2023, 154: 106571. [41] SHIRI I, VAFAEI SADR A, AMINI M, et al. Decentralized distributed multi-institutional PET image segmentation using a federated deep learning framework[J]. Clinical Nuclear Medicine, 2022, 47(7): 606-617. [42] ZUNAIR H, BEN HAMZA A. Melanoma detection using adversarial training and deep transfer learning[J]. Physics in Medicine & Biology, 2020, 65(13): 135005. [43] LIU F L, ZHU T T, WU X, et al. A medical multimodal large language model for future pandemics[J]. NPJ Digital Medicine, 2023, 6: 226. [44] UDDIN M F, TAFSHIR N, KHAN M M. A comparative analysis towards melanoma classification using transfer learning by analyzing dermoscopic images[EB/OL]. [2024-12-06]. https://arxiv.org/abs/2312.01212. [45] OWENS K E, ZEGEYE Y, SAADE R, et al. Primary dermal melanoma: a rare subtype of melanoma and clinical mimicker of basal cell carcinoma[J]. Cureus, 2024, 16(7): e65538. [46] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2024-12-15]. https://arxiv.org/abs/1412.3555. [47] AHMAD B, USAMA M, AHMAD T, et al. An ensemble model of convolution and recurrent neural network for skin disease classification[J]. International Journal of Imaging Systems and Technology, 2022, 32(1): 218-229. [48] DIVYA D, GANESHBABU T R. Fitness adaptive deer hunting-based region growing and recurrent neural network for melanoma skin cancer detection[J]. International Journal of Imaging Systems and Technology, 2020, 30(3): 731-752. [49] MA Q L, LI S, COTTRELL G W. Adversarial joint-learning recurrent neural network for incomplete time series classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1765-1776. [50] MONICA K M, SHREEHARSHA J, FALKOWSKI-GILSKI P, et al. Melanoma skin cancer detection using mask-RCNN with modified GRU model[J]. Frontiers in Physiology, 2024, 14: 1324042. [51] TOMASIELLO S, LOIA V, KHALIQ A. A granular recurrent neural network for multiple time series prediction[J]. Neural Computing and Applications, 2021, 33(16): 10293-10310. [52] SHENG C Y, GAO X, HU X P, et al. Differentiable neural architecture search based on efficient architecture for lightweight image super-resolution[C]//Proceedings of the 2024 International Conference on Multimedia Modeling. Cham: Springer, 2024: 169-183. [53] ZHANG T H, LIU Y Z, SHEN Z S, et al. An adaptive federated relevance framework for spatial-temporal graph learning[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(5): 2227-2240. [54] PUSCAS M M, XU D, PILZER A, et al. Structured coupled generative adversarial networks for unsupervised monocular depth estimation[C]//Proceedings of the 2019 International Conference on 3D Vision. Piscataway: IEEE, 2019: 18-26. [55] GOWTHAMI S, HARIKUMAR R. Improved self-attention generative adversarial adaptation network-based melanoma classification[J]. Journal of Intelligent & Fuzzy Systems, 2023, 44(3): 4113-4122. [56] GOWTHAMI S, HARIKUMAR R. Residual generative adversarial adaptation network for the classification of melanoma[J]. International Journal of Computers Communications & Control, 2023, 18(6). [57] HARINI P, MADHAVI N B, LATHA S B, et al. Optimized self-attention based cycle-consistent generative adversarial network adopted melanoma classification from dermoscopic images[J]. Microscopy Research and Technique, 2024, 87(6): 1271-1285. [58] AHMED K R, JALIL S Z A, USMAN S. Improved squirrel optimization based generative adversarial network for skin cancer classification[C]//Proceedings of the 2023 IEEE 2nd National Biomedical Engineering Conference. Piscataway: IEEE, 2023: 121-126. [59] AL ZEGAIR F, RUTJES C, BETZ-STABLEIN B, et al. Suspicious naevi classification using auxiliary classifier generative adversarial network[C]//Proceedings of the 2023 International Conference on Digital Image Computing: Techniques and Applications. Piscataway: IEEE, 2024: 245-250. [60] LAKSHMI D S, DIVYA A, SAI M B, et al. Skin cancer diagnosis using deep convolutional generative adversarial network for image classification[C]//Proceedings of the 2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things. Piscataway: IEEE, 2024: 1219-1225. [61] HAN K, WANG Y H, CHEN H T, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87-110. [62] TADA M, HAN X H. Bottleneck transformer model with channel self-attention for skin lesion classification[C]//Proceedings of the 2023 18th International Conference on Machine Vision and Applications. Piscataway: IEEE, 2023: 1-5. [63] CIRRINCIONE G, CANNATA S, CICCERI G, et al. Transformer-based approach to melanoma detection[J]. Sensors, 2023, 23(12): 5677. [64] SANG S T, ZHOU Y Y, ISLAM M T, et al. Small-object sensitive segmentation using across feature map attention[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 6289-6306. [65] CHANG M, HE C, DU Y, et al. RaT: Raman transformer for highly accurate melanoma detection with critical features visualization[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 305: 123475. [66] ROY V K, THAKUR V, GOYAL N. Vision transformer framework approach for melanoma skin disease identification[EB/OL]. (2023-02-13) [2024-12-01]. https://doi.org/10.21203/rs.3.rs-2536632/v1. [67] XIE J S, WU Z Z, ZHU R J, et al. Melanoma detection based on swin transformer and SimAM[C]//Proceedings of the 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2021: 1517-1521. [68] XIN C, LIU Z F, ZHAO K Y, et al. An improved transformer network for skin cancer classification[J]. Computers in Biology and Medicine, 2022, 149: 105939. [69] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 9992-10002. [70] CHEN C R, FAN Q F, PANDA R. CrossViT: cross-attention multi-scale vision transformer for image classification[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 347-356. [71] WANG Z F, WU Z B, AGARWAL D, et al. MedCLIP: contrastive learning from unpaired medical images and text[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 3876-3887. [72] ZHU Z D, LIN K X, JAIN A K, et al. Transfer learning in deep reinforcement learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13344-13362. [73] SONG Y J, SUGANTHAN P N, PEDRYCZ W, et al. Ensemble reinforcement learning: a survey[J]. Applied Soft Computing, 2023, 149: 110975. [74] JAIN M, JAIN M, FAIZAN M, et al. Melanoma classification using deep learning architectures and transfer learning[C]//Proceedings of the 2021 International Conference on Industrial Electronics Research and Applications. Piscataway: IEEE, 2022: 1-5. [75] GU Y Y, GE Z Y, BONNINGTON C P, et al. Progressive transfer learning and adversarial domain adaptation for cross-domain skin disease classification[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(5): 1379-1393. [76] PAREKH F J, YADAV R. Classification of melanoma skin cancer using transfer learning[J]. International Journal for Research in Applied Science and Engineering Technology, 2024, 12(4): 5581-5585. [77] OSOWSKI S, LES T. Deep learning ensemble for melanoma recognition[C]//Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-7. [78] SETHANAN K, PITAKASO R, SRICHOK T, et al. Double AMIS-ensemble deep learning for skin cancer classification[J]. Expert Systems with Applications, 2023, 234: 121047. [79] ALI SHAH A, ALI SHAKER A S, JABBAR S, et al. An ensemble-based deep learning model for detection of mutation causing cutaneous melanoma[J]. Scientific Reports, 2023, 13: 22251. [80] ENNAJI A, EL KHOUKHI H, SABRI M A, et al. Malignant melanoma detection using multi-scale image decomposition and a new ensemble-learning scheme[J]. Multimedia Tools and Applications, 2024, 83(7): 21213-21228. [81] RIAO BORDA S, GUARNIZO J G, CAMACHO POVEDA E C, et al. Automated malignant melanoma classification using convolutional neural networks[J]. Ciencia e Ingeniería Neogranadina, 2022, 32(2): 171-185. [82] 张杰, 赵惠军, 李贤威, 等. 基于深度学习方法检测皮肤镜图像中黑色素瘤的研究进展与展望[J]. 医疗卫生装备, 2018, 39(11): 90-95. ZHANG J, ZHAO H J, LI X W, et al. Progress and prospects of detecting melanoma in dermoscopy images based on deep learning method[J]. Chinese Medical Equipment Journal, 2018, 39(11): 90-95. [83] LI X M, YU L Q, CHEN H, et al. Semi-supervised skin lesion segmentation via transformation consistent self-ensembling model[EB/OL]. [2024-12-15]. https://arxiv.org/abs/1808.03887. [84] NAKANO A, CHEN S, DEMACHI K. Cross-task consistency learning framework for multi-task learning[EB/OL]. [2024-12-15]. https://arxiv.org/abs/2111.14122. [85] 孟如松, 孟晓, 姜志国, 等. 基于国人皮肤镜黑素细胞肿瘤图像的智能化分类与识别研究[J]. 中国体视学与图像分析, 2012, 17(3): 191-199. MENG R S, MENG X, JIANG Z G, et al. Intelligent classification and recognition for dermatoscopic images of melanocytic tumors in Chinese patients[J]. Chinese Journal of Stereology and Image Analysis, 2012, 17(3): 191-199. [86] SOLOPERTO R, MüLLER M A, ALLG?WER F. Guaranteed closed-loop learning in model predictive control[J]. IEEE Transactions on Automatic Control, 2023, 68(2): 991-1006. |
| [1] | 江德鸿, 卢佳慧, 李岩. 伪标签驱动的类内域对齐:跨域开放集故障诊断[J]. 计算机科学与探索, 2025, 19(9): 2445-2457. |
| [2] | 魏宗月, 仇大伟, 刘静, 李振江, 常少华. 深度学习在上肢骨折诊断中的研究进展[J]. 计算机科学与探索, 2025, 19(9): 2341-2362. |
| [3] | 化春键, 姚烨涛, 蒋毅, 俞建峰, 陈莹. 特征增强和渐进式解码的RGB-D显著性检测[J]. 计算机科学与探索, 2025, 19(9): 2419-2429. |
| [4] | 喇超, 李淼, 张峰, 张翠婷. 高能效CNN加速器设计[J]. 计算机科学与探索, 2025, 19(9): 2520-2531. |
| [5] | 杨彬, 马廷淮, 黄学坚, 王宇博, 王朝明, 赵博文, 于信. 基于时空特征融合与序列重构的时间序列异常检测[J]. 计算机科学与探索, 2025, 19(9): 2384-2398. |
| [6] | 刘晓佳, 陈泓妤, 于德新, 陈云结, 周宇琴. 面向自动驾驶汽车长短时特性的轨迹预测综述[J]. 计算机科学与探索, 2025, 19(9): 2363-2383. |
| [7] | 张丽敏, 李扬, 蔡浩, 燕浩. 多层次通道融合语音情感识别方法[J]. 计算机科学与探索, 2025, 19(8): 2219-2228. |
| [8] | 洪维, 耿沛霖, 王弘宇, 张雪芹, 顾春华. 结合图像显著性区域的局部动态干净标签后门攻击[J]. 计算机科学与探索, 2025, 19(8): 2229-2240. |
| [9] | 闵锋, 刘宇卓, 刘煜晖, 刘彪. 基于时域频域混合特征的多变量时序预测模型[J]. 计算机科学与探索, 2025, 19(8): 2099-2109. |
| [10] | 董甲东, 桑飞虎, 郭庆虎, 陈琳, 郑春香. 基于深度学习的目标检测算法轻量化研究综述[J]. 计算机科学与探索, 2025, 19(8): 2057-2084. |
| [11] | 张亦菲, 李艳玲, 葛凤培. 基于图深度学习的司法判决预测综述[J]. 计算机科学与探索, 2025, 19(8): 2024-2042. |
| [12] | 李顺勇, 李嘉茗, 曹付元, 郑孟蛟. 融合局部和全局特征的深度多视图聚类网络[J]. 计算机科学与探索, 2025, 19(8): 2085-2098. |
| [13] | 许光远, 张亚强, 史宏志. 面向大规模DNN训练场景的容错技术综述[J]. 计算机科学与探索, 2025, 19(7): 1771-1788. |
| [14] | 陈旭, 张其, 王叔洋, 景永俊. 自适应积空间离散动态图链接预测模型[J]. 计算机科学与探索, 2025, 19(7): 1820-1831. |
| [15] | 冯勇, 栾超杰, 王嵘冰, 徐红艳, 张永刚. 聚合全局交互与局部交互的知识图谱补全[J]. 计算机科学与探索, 2025, 19(7): 1909-1917. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||