
计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (10): 2648-2666.DOI: 10.3778/j.issn.1673-9418.2501059
陈丽芳,许恺龙,赵人喆,韩阳,代琪
出版日期:2025-10-01
发布日期:2025-09-30
CHEN Lifang, XU Kailong, ZHAO Renzhe, HAN Yang, DAI Qi
Online:2025-10-01
Published:2025-09-30
摘要: 随着大规模异构数据的快速增长,集中式联邦学习面临数据处理和隐私保护的挑战。去中心化联邦学习通过消除对中心服务器的依赖,增强了系统容错性和适应性,同时分散通信负载,显著提升了隐私保护水平。系统性地阐述了集中式联邦学习与去中心化联邦学习的基本原理,并通过多维度对比分析体现两者差异。在此基础上,深入探讨了去中心化联邦学习在通信优化、隐私保护机制、模型聚合策略等方面的技术优势与创新方法。全面分析了去中心化联邦学习在医疗健康、智能制造、智慧城市等领域的应用前景与发展趋势。通过对比常见去中心化联邦学习框架在常用数据集上的性能,展示了不同框架的优势,并总结了当前主流的开源框架,对未来研究可能面临的技术挑战和发展机遇进行了展望。
陈丽芳, 许恺龙, 赵人喆, 韩阳, 代琪. 去中心化联邦学习综述[J]. 计算机科学与探索, 2025, 19(10): 2648-2666.
CHEN Lifang, XU Kailong, ZHAO Renzhe, HAN Yang, DAI Qi. Review of Decentralized Federated Learning[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2648-2666.
| [1] GHOLAMI A, TORKZABAN N, BARAS J S. Trusted decentralized federated learning[C]//Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference. Piscataway: IEEE, 2022: 1-6. [2] XU J, GLICKSBERG B S, SU C, et al. Federated learning for healthcare informatics[J]. Journal of Healthcare Informatics Research, 2021, 5(1): 1-19. [3] LIAN X, ZHANG C, ZHANG H, et al. Can decentralized algorithms outperform centralized algorithms a case study for decentralized parallel stochastic gradient descent[C]//Advances in Neural Information Processing Systems 30, 2017: 5330-5340. [4] HAGGENMüLLER S, SCHMITT M, KRIEGHOFF-HENNING E, et al. Federated learning for decentralized artificial intelligence in melanoma diagnostics[J]. JAMA Dermatology, 2024, 160(3): 303-311. [5] KALRA S, WEN J F, CRESSWELL J C, et al. Decentralized federated learning through proxy model sharing[J]. Nature Communications, 2023, 14: 2899. [6] YEMINI M, SAHA R, OZFATURA E, et al. Semi-decentralized federated learning with collaborative relaying[C]//Proceedings of the 2022 IEEE International Symposium on Information Theory. Piscataway: IEEE, 2022: 1471-1476. [7] LIN F P, HOSSEINALIPOUR S, AZAM S S, et al. Semi-decentralized federated learning with cooperative D2D local model aggregations[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(12): 3851-3869. [8] XIAO Y, YE Y, HUANG S C, et al. Fully decentralized federated learning-based on-board mission for UAV swarm system[J]. IEEE Communications Letters, 2021, 25(10): 3296- 3300. [9] DUAN M M, LIU D, JI X Y, et al. FedGroup: efficient federated learning via decomposed similarity-based clustering[C]//Proceedings of the 2021 IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking. Piscataway: IEEE, 2021: 228-237. [10] HUA Y F, MILLER K, BERTOZZI A L, et al. Efficient and reliable overlay networks for decentralized federated learning [J]. SIAM Journal on Applied Mathematics, 2022, 82(4): 1558-1586. [11] AUGENSTEIN S, HARD A, PARTRIDGE K, et al. Jointly learning from decentralized (federated) and centralized data to mitigate distribution shift[EB/OL]. [2024-11-17]. https://arxiv.org/abs/2111.12150. [12] BRIGGS C, FAN Z, ANDRAS P. Federated learning with hierarchical clustering of local updates to improve training on non-IID data[C]//Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-9. [13] AL-ABIAD M S, OBEED M, HOSSAIN M J, et al. Decentralized aggregation for energy-efficient federated learning via D2D communications[J]. IEEE Transactions on Communications, 2023, 71(6): 3333-3351. [14] GOU Y, WENG S Y, ALI IMRAN M, et al. Voting consensus-based decentralized federated learning[J]. IEEE Internet of Things Journal, 2024, 11(9): 16267-16278. [15] BONAWITZ K, EICHNER H, GRIESKAMP W, et al. Towards federated learning at scale: system design[C]//Proceedings of the 2nd Conference on Machine Learning and Systems, 2019: 374-388. [16] PINYOANUNTAPONG P, HUFF W H, LEE M, et al. Toward scalable and robust AIoT via decentralized federated learning[J]. IEEE Internet of Things Magazine, 2022, 5(1): 30-35. [17] CAO J, LIAN Z R, LIU W H, et al. HADFL: heterogeneity-aware decentralized federated learning framework[C]//Proceedings of the 2021 58th ACM/IEEE Design Automation Conference. Piscataway: IEEE, 2021: 1-6. [18] ZEHTABI S, HOSSEINALIPOUR S, BRINTON C G. Decentralized event-triggered federated learning with heterogeneous communication thresholds[C]//Proceedings of the 2022 IEEE 61st Conference on Decision and Control. Piscataway: IEEE, 2022: 4680-4687. [19] CHEN Z Y, LIAO W X, TIAN P, et al. A fairness-aware peer-to-peer decentralized learning framework with heterogeneous devices[J]. Future Internet, 2022, 14(5): 138. [20] WINK T, NOCHTA Z. An approach for peer-to-peer federated learning[C]//Proceedings of the 2021 51st Annual IEEE/ IFIP International Conference on Dependable Systems and Networks. Piscataway: IEEE, 2021: 150-157. [21] HU C, JIANG J, WANG Z. Decentralized federated learning: a segmented gossip approach[EB/OL]. [2024-11-17]. https://arxiv.org/abs/1908.07782. [22] JIANG J Y, HU L, HU C H, et al. BACombo: bandwidth-aware decentralized federated learning[J]. Electronics, 2020, 9(3): 440. [23] HEGED?S I, DANNER G, JELASITY M. Decentralized learning works: an empirical comparison of gossip learning and federated learning[J]. Journal of Parallel and Distributed Computing, 2021, 148: 109-124. [24] BELAL Y, BELLET A, BEN MOKHTAR S, et al. Pepper: empowering user-centric recommender systems over gossip learning[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022, 6(3): 1-27. [25] KHELGHATDOUST M, MAHDAVI M. A socially-aware, privacy-preserving, and scalable federated learning protocol for distributed online social networks[C]//Proceedings of the 2022 International Conference on Advanced Information Networking and Applications. Cham: Springer, 2022: 192-203. [26] MINSKER S. Distributed statistical estimation and rates of convergence in normal approximation[J]. Electronic Journal of Statistics, 2019, 13(2): 5213-5252. [27] TANG H, GAN S, ZHANG C, et al. Communication compression for decentralized training[C]//Advances in Neural Information Processing Systems 31, 2018: 7663-7673. [28] YUAN K, LING Q, YIN W T. On the convergence of decentralized gradient descent[J]. SIAM Journal on Optimization, 2016, 26(3): 1835-1854. [29] SHI W, LING Q, YUAN K, et al. On the linear convergence of the ADMM in decentralized consensus optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1750-1761. [30] SHI W, LING Q, WU G, et al. EXTRA: an exact first-order algorithm for decentralized consensus optimization[J]. SIAM Journal on Optimization, 2015, 25(2): 944-966. [31] DENG W, LAI M J, PENG Z M, et al. Parallel multi-block ADMM with o(1/k) convergence[J]. Journal of Scientific Computing, 2017, 71(2): 712-736. [32] CHEN L, LIU W, CHEN Y F, et al. Communication-efficient design for quantized decentralized federated learning[J]. IEEE Transactions on Signal Processing, 2024, 72: 1175-1188. [33] WANG Z B, ZHOU Y, SHI Y M. Decentralized over-the-air federated learning in full-duplex MIMO networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 19142-19156. [34] KANG Y, SONG J. Decentralized federated learning over random access channel[J]. IEEE Wireless Communications Letters, 2024, 13(11): 3207-3211. [35] MAO X H, YUAN K, HU Y B, et al. Walkman: a communication-efficient random-walk algorithm for decentralized optimization[J]. IEEE Transactions on Signal Processing, 2020, 68: 2513-2528. [36] YE Y, CHEN H, MA Z, et al. Decentralized consensus optimization based on parallel random walk[J]. IEEE Communications Letters, 2020, 24(2): 391-395. [37] MAO X H, GU Y T, YIN W T. Walk proximal gradient: an energy-efficient algorithm for consensus optimization[J]. IEEE Internet of Things Journal, 2019, 6(2): 2048-2060. [38] ALISTARH D, GRUBIC D, LI J, et al. QSGD: communication-efficient SGD via gradient quantization and encoding[C]// Advances in Neural Information Processing Systems 30, 2017: 1709-1720. [39] ZHU S Y, CHEN B. Quantized consensus by the ADMM: probabilistic versus deterministic quantizers[J]. IEEE Transactions on Signal Processing, 2016, 64(7): 1700-1713. [40] BASU D, DATA D, KARAKUS C, et al. Qsparse-local-SGD: distributed SGD with quantization, sparsification, and local computations[C]//Advances in Neural Information Processing Systems 32, 2019: 14668-14679. [41] LI B S, GAO W F, XIE J, et al. Prototype-based decentralized federated learning for the heterogeneous time-varying IoT systems[J]. IEEE Internet of Things Journal, 2024, 11(4): 6916-6927. [42] XIE H H, XIA M H, WU P R, et al. Decentralized federated learning with asynchronous parameter sharing for large-scale IoT networks[J]. IEEE Internet of Things Journal, 2024, 11(21): 34123-34139. [43] XU Y, XIAO M J, WU J, et al. Enhancing decentralized federated learning with model pruning and adaptive communication[J]. IEEE Transactions on Industrial Informatics, 2025, 21(1): 70-84. [44] GUO F H, LI S W, YANG H, et al. An efficient sequential decentralized federated progressive channel pruning strategy for smart grid electricity theft detection[J]. IEEE Transactions on Industrial Informatics, 2025, 21(3): 2393-2402. [45] FENG C, LIU B, YU K, et al. Blockchain-empowered decentralized horizontal federated learning for 5G-enabled UAVs[J]. IEEE Transactions on Industrial Informatics, 2021, 18(5): 3582-3592. [46] RIDHAWI I, OTOUM S, ALOQAILY M. Decentralized zero-trust framework for digital twin-based 6g[EB/OL]. [2024-11-18]. https://arxiv.org/abs/2302.03107. [47] JIN D, KANNENGIESSER N, RANK S, et al. Collaborative distributed machine learning[J]. ACM Computing Surveys, 2024, 57(4): 1-36. [48] KUO T T, PHAM A. Detecting model misconducts in decentralized healthcare federated learning[J]. International Journal of Medical Informatics, 2022, 158: 104658. [49] MOTHUKURI V, PARIZI R M, POURIYEH S, et al. A survey on security and privacy of federated learning[J]. Future Generation Computer Systems, 2021, 115: 619-640. [50] SHI Y, SHEN L, WEI K, et al. Improving the model consistency of decentralized federated learning[C]//Proceedings of the 40th International Conference on Machine Learning, 2023: 31269-31291. [51] WU S Y, HUANG D Y, WANG H S. Network gradient descent algorithm for decentralized federated learning[J]. Journal of Business & Economic Statistics, 2023, 41(3): 806-818. [52] NADIRADZE G, SABOUR A, DAVIES P, et al. Asynchronous decentralized SGD with quantized and local updates[C]//Advances in Neural Information Processing Systems 34, 2021: 6829-6842. [53] LI X L, LI Y Z, WANG J N, et al. Decentralized federated meta-learning framework for few-shot multitask learning[J]. International Journal of Intelligent Systems, 2022, 37(11): 8490-8522. [54] VANHAESEBROUCK P, BELLET A, TOMMASI M. Decentralized collaborative learning of personalized models over networks[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017: 509-517. [55] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2024-11-18]. https://arxiv.org/abs/1503.02531. [56] ANIL R, PEREYRA G, PASSOS A, et al. Large scale distributed neural network training through online distillation[EB/OL]. [2024-11-18]. https://arxiv.org/abs/1804.03235. [57] SáNCHEZ P M S, CELDRáN A H, BELTRáN E T M, et al. Analyzing the robustness of decentralized horizontal and vertical federated learning architectures in a non-IID scenario [EB/OL]. [2024-11-18]. https://arxiv.org/abs/2210.11061. [58] LI X, CHEN B, LU W. FedDKD: federated learning with decentralized knowledge distillation[J]. Applied Intelligence, 2023, 53(15): 18547-18563. [59] UR REHMAN M H, DIRIR A M, SALAH K, et al. TrustFed: a framework for fair and trustworthy cross-device federated learning in IIoT[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8485-8494. [60] MOTHUKURI V, PARIZI R M, POURIYEH S, et al. FabricFL: blockchain-in-the-loop federated learning for trusted decentralized systems[J]. IEEE Systems Journal, 2022, 16(3): 3711-3722. [61] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017: 1273-1282. [62] HU X Y, LI R Q, WANG L C, et al. A data sharing scheme based on federated learning in IoV[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11644-11656. [63] BAGHERSALIMI S, TEIJEIRO T, AMINIFAR A, et al. Decentralized federated learning for epileptic seizures detection in low-power wearable systems[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 6392-6407. [64] ZHU W H, SHI L, LI J, et al. Trustworthy blockchain-assisted federated learning: decentralized reputation management and performance optimization[J]. IEEE Internet of Things Journal, 2025, 12(3): 2890-2905. [65] NEDIC A, OZDAGLAR A. Distributed subgradient methods for multi-agent optimization[J]. IEEE Transactions on Automatic Control, 2009, 54(1): 48-61. [66] JIANG J Y, HU L. Decentralised federated learning with adaptive partial gradient aggregation[J]. CAAI Transactions on Intelligence Technology, 2020, 5(3): 230-236. [67] CHEN Z K, LI D F, ZHU J K, et al. DACFL: dynamic average consensus-based federated learning in decentralized sensors network[J]. Sensors, 2022, 22(9): 3317. [68] HE L, BIAN A, JAGGI M. Cola: decentralized linear learning [C]//Advances in Neural Information Processing Systems 31, 2018: 4541-4551. [69] VEPAKOMMA P, GUPTA O, SWEDISH T, et al. Split learning for health: distributed deep learning without sharing raw patient data[EB/OL]. [2024-11-20]. https://arxiv.org/abs/1812.00564. [70] SUN T, LI D S, WANG B. Decentralized federated averaging [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4289-4301. [71] YUAN Y, LIU J, JIN D, et al. DeceFL: a principled fully decentralized federated learning framework[J]. National Science Open, 2023, 2(1): 20220043. [72] CHEN X H, XU G Y, XU X S, et al. Multicenter hierarchical federated learning with fault-tolerance mechanisms for resilient edge computing networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(1): 47-61. [73] RAWAT R S, DIWAKAR M, VERMA P. ZeroAccess botnet investigation and analysis[J]. International Journal of Information Technology, 2021, 13(5): 2091-2099. [74] KANAGAVELU R, WEI Q S, LI Z X, et al. CE-Fed: communication efficient multi-party computation enabled federated learning[J]. Array, 2022, 15: 100207. [75] YIN J, CUI X, LI K. A reputation-based resilient and recoverable P2P botnet[C]//Proceedings of the 2017 IEEE Second International Conference on Data Science in Cyberspace. Piscataway: IEEE, 2017: 275-282. [76] RODRíGUEZ-BARROSO N, JIMéNEZ-LóPEZ D, LUZóN M V, et al. Survey on federated learning threats: concepts, taxonomy on attacks and defences, experimental study and challenges[J]. Information Fusion, 2023, 90: 148-173. [77] CHENG K W, FAN T, JIN Y L, et al. SecureBoost: a lossless federated learning framework[J]. IEEE Intelligent Systems, 2021, 36(6): 87-98. [78] VERBRAEKEN J, DE VOS M, POUWELSE J. Bristle: decentralized federated learning in Byzantine, non-IID environments[EB/OL]. [2024-11-20]. https://arxiv.org/abs/2110. 11006. [79] ALANGOT B, REIJSBERGEN D, VENUGOPALAN S, et al. Decentralized and lightweight approach to detect eclipse attacks on proof of work blockchains[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1659-1672. [80] NIU B, CHEN Y H, WANG Z B, et al. Eclipse: preserving differential location privacy against long-term observation attacks[J]. IEEE Transactions on Mobile Computing, 2022, 21(1): 125-138. [81] WANG J H, CHANG X L, RODRìGUEZ R J, et al. Assessing anonymous and selfish free-rider attacks in federated learning[C]//Proceedings of the 2022 IEEE Symposium on Computers and Communications. Piscataway: IEEE, 2022: 1-6. [82] PIASECZNY A, RUZOMBERKA E, PARASNIS R, et al. Adversarial node placement in decentralized federated learning: maximum spanning-centrality strategy and performance analysis[J]. IEEE Internet of Things Journal, 2025, 12(1): 45-60. [83] CHEN S Z, YU D X, ZOU Y F, et al. Decentralized wireless federated learning with differential privacy[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 6273-6282. [84] CHEN Y, LUO F, LI T, et al. A training-integrity privacy-preserving federated learning scheme with trusted execution environment[J]. Information Sciences, 2020, 522: 69-79. [85] SHIRI I, VAFAEI SADR A, AMINI M, et al. Decentralized distributed multi-institutional PET image segmentation using a federated deep learning framework[J]. Clinical Nuclear Medicine, 2022, 47(7): 606-617. [86] QI M F, WANG Z Y, CHEN S P, et al. A hybrid incentive mechanism for decentralized federated learning[J]. Distributed Ledger Technologies: Research and Practice, 2022, 1(1): 1-15. [87] SHEN M, WANG J, ZHANG J, et al. Secure decentralized aggregation to prevent membership privacy leakage in edge-based federated learning[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(3): 3105-3119. [88] CHE C J, LI X L, CHEN C, et al. A decentralized federated learning framework via committee mechanism with convergence guarantee[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(12): 4783-4800. [89] LI X Y, ZHAO H M, XU J J, et al. APDPFL: anti-poisoning attack decentralized privacy enhanced federated learning scheme for flight operation data sharing[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 19098-19109. [90] KANG J W, XIONG Z H, NIYATO D, et al. Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory[J]. IEEE Internet of Things Journal, 2019, 6(6): 10700-10714. [91] 乔少杰, 林羽丰, 韩楠, 等. 基于贡献度证明共识机制的去中心化联邦学习框架[J]. 软件学报, 2023, 34(3): 1148-1167. QIAO S J, LIN Y F, HAN N, et al. Decentralized federated learning framework based on proof-of-contribution consensus mechanism[J]. Journal of Software, 2023, 34(3): 1148-1167. [92] LU G X, XIONG Z B, LI R N, et al. Decentralized federated learning: a defense against gradient inversion attack[C]//Proceedings of the 15th EAI International Conference on Wireless Internet. Cham: Springer, 2023: 44-56. [93] QU Y Y, XU C H, GAO L X, et al. FL-SEC: privacy-preserving decentralized federated learning using SignSGD for the Internet of artificially intelligent things[J]. IEEE Internet of Things Magazine, 2022, 5(1): 85-90. [94] GóMEZ á L P, BELTRáN E T M, SáNCHEZ P M S, et al. TemporalFED: detecting cyberattacks in industrial time-series data using decentralized federated learning[EB/OL]. [2024-11-20]. https://arxiv.org/abs/2308.03554. [95] MARTíNEZ BELTRáN E T, SáNCHEZ SáNCHEZ P M, LóPEZ BERNAL S, et al. Mitigating communications threats in decentralized federated learning through moving target defense[J]. Wireless Networks, 2024, 30(9): 7407-7421. [96] WEI M L, YU W W, CHEN D X. AccDFL: accelerated decentralized federated learning for healthcare IoT networks[J]. IEEE Internet of Things Journal, 2025, 12(5): 5329-5345. [97] LI C G, NI W, DING M, et al. Decentralized privacy preservation for critical connections in graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(11): 5911-5925. [98] MA X Y, XU D. TORR: a lightweight blockchain for decentralized federated learning[J]. IEEE Internet of Things Journal, 2024, 11(1): 1028-1040. [99] LI Y Z, CHEN C, LIU N, et al. A blockchain-based decentralized federated learning framework with committee consensus[J]. IEEE Network, 2021, 35(1): 234-241. [100] XU G X, ZHOU Z J, DONG J N, et al. A blockchain-based federated learning scheme for data sharing in industrial Internet of things[J]. IEEE Internet of Things Journal, 2023, 10(24): 21467-21478. [101] JIN H, DAI X H, XIAO J, et al. Cross-cluster federated learning and blockchain for Internet of medical things[J]. IEEE Internet of Things Journal, 2021, 8(21): 15776-15784. [102] PIYARISI M M, SHALPEGIN T. Incentives in decentralised autonomous organisations[J]. International Journal of Production Economics, 2025, 280: 109472. [103] XU L, CHEN Y L, CHEN Y T, et al. Swarm learning for temporal and spatial series data in energy systems: a decentralized collaborative learning design based on blockchain[J]. Applied Energy, 2025, 381: 125053. [104] ZHANG W S, LU Q H, YU Q Y, et al. Blockchain-based federated learning for device failure detection in industrial IoT[J]. IEEE Internet of Things Journal, 2021, 8(7): 5926-5937. [105] SHARMA I, KHULLAR V. Blockchain-enabled federated learning-based privacy preservation framework for secure IoT in precision agriculture[J]. Journal of Industrial Information Integration, 2025, 44: 100765. [106] TSANG Y P, WU C H, IP W H, et al. A blockchain-enabled horizontal federated learning system for fuzzy invasion detection in maintaining space security[J]. Journal of Industrial Information Integration, 2025, 43: 100745. [107] EL RIFAI O, BIOTTEAU M, DE BOISSEZON X, et al. Blockchain-based federated learning in medicine[C]//Proceedings of the 18th International Conference on Artificial Intelligence in Medicine. Cham: Springer, 2020: 214-224. [108] AICH S, SINAI N K, KUMAR S, et al. Protecting personal healthcare record using blockchain & federated learning technologies[C]//Proceedings of the 2021 23rd International Conference on Advanced Communication Technology. Piscataway: IEEE, 2021: 109-112. [109] ALZUBI J A, ALZUBI O A, SINGH A, et al. Cloud-IIoT-based electronic health record privacy-preserving by CNN and blockchain-enabled federated learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 1080-1087. [110] FAN M C, ZHANG Z P, LI Z H, et al. Blockchain-based decentralized and lightweight anonymous authentication for federated learning[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 12075-12086. [111] GURUNG D, POKHREL S R, LI G. Decentralized quantum federated learning for metaverse: analysis, design and implementation[EB/OL]. [2024-11-23]. https://arxiv.org/abs/2306.11297. [112] ZHOU X K, LIANG W, WANG K I, et al. Decentralized P2P federated learning for privacy-preserving and resilient mobile robotic systems[J]. IEEE Wireless Communications, 2023, 30(2): 82-89. [113] LIU Q, YANG B, WANG Z J, et al. Asynchronous decentralized federated learning for collaborative fault diagnosis of PV stations[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(3): 1680-1696. [114] NAKIP M, GüL B C, GELENBE E. Decentralized online federated G-network learning for lightweight intrusion detection[C]//Proceedings of the 2023 31st International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems. Piscataway: IEEE, 2023: 1-8. [115] LIU D, MILLER T, SAYEED R, et al. FADL: federated autonomous deep learning for distributed electronic health record[EB/OL]. [2024-11-23]. https://arxiv.org/abs/1811.11400. [116] HUANG L, SHEA A L, QIAN H N, et al. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records[J]. Journal of Biomedical Informatics, 2019, 99: 103291. [117] LU S T, ZHANG Y W, WANG Y L. Decentralized federated learning for electronic health records[C]//Proceedings of the 2020 54th Annual Conference on Information Sciences and Systems. Piscataway: IEEE, 2020: 1-5. [118] ELAYAN H, ALOQAILY M, GUIZANI M. Deep federated learning for IoT-based decentralized healthcare systems[C]//Proceedings of the 2021 International Wireless Communications and Mobile Computing. Piscataway: IEEE, 2021: 105-109. [119] WARNAT-HERRESTHAL S, SCHULTZE H, SHASTRY K L, et al. Swarm learning for decentralized and confidential clinical machine learning[J]. Nature, 2021, 594(7862): 265-270. [120] SALIM M M, PARK J H. Federated learning-based secure electronic health record sharing scheme in medical informatics[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(2): 617-624. [121] NGUYEN T V, DAKKA M A, DIAKIW S M, et al. A novel decentralized federated learning approach to train on globally distributed, poor quality, and protected private medical data[J]. Scientific Reports, 2022, 12: 8888. [122] CAMAJORI TEDESCHINI B, SAVAZZI S, STOKLASA R, et al. Decentralized federated learning for healthcare networks: a case study on tumor segmentation[J]. IEEE Access, 2022, 10: 8693-8708. [123] LIAN Z T, YANG Q L, WANG W Z, et al. DEEP-FEL: decentralized, efficient and privacy-enhanced federated edge learning for healthcare cyber physical systems[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(5): 3558-3569. [124] WANG Z, HU Y F, YAN S Y, et al. Efficient ring-topology decentralized federated learning with deep generative models for medical data in eHealthcare systems[J]. Electronics, 2022, 11(10): 1548. [125] PENNISI M, SALANITRI F P, BELLITTO G, et al. Decentralized distributed learning with privacy-preserving data synthesis[EB/OL]. [2024-11-23]. https://arxiv.org/abs/2206. 10048. [126] TIAN Y L, WANG S, XIONG J B, et al. Robust and privacy-preserving decentralized deep federated learning training: focusing on digital healthcare applications[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2024, 21(4): 890-901. [127] ALSAMHI S H, MYRZASHOVA R, HAWBANI A, et al. Federated learning meets blockchain in decentralized data sharing: healthcare use case[J]. IEEE Internet of Things Journal, 2024, 11(11): 19602-19615. [128] SAVAZZI S, NICOLI M, BENNIS M, et al. Opportunities of federated learning in connected, cooperative, and automated industrial systems[J]. IEEE Communications Magazine, 2021, 59(2): 16-21. [129] QU Y Y, POKHREL S R, GARG S, et al. A blockchained federated learning framework for cognitive computing in industry 4.0 networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2964-2973. [130] MA T, WANG H B, LI C. Quantized distributed federated learning for industrial Internet of things[J]. IEEE Internet of Things Journal, 2023, 10(4): 3027-3036. [131] WANG H, MU?OZ-GONZáLEZ L, EKLUND D, et al. Non-IID data re-balancing at IoT edge with peer-to-peer federated learning for anomaly detection[C]//Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks. New York: ACM, 2021: 153-163. [132] LIAN Z T, SU C H. Decentralized federated learning for Internet of things anomaly detection[C]//Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security. New York: ACM, 2022: 1249-1251. [133] ABDEL-BASSET M, MOUSTAFA N, HAWASH H. Privacy- preserved cyberattack detection in industrial edge of things (IEoT): a blockchain-orchestrated federated learning approach [J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 7920-7934. [134] OCHIAI H, SUN Y, JIN Q, et al. Wireless ad hoc federated learning: a fully distributed cooperative machine learning[EB/OL]. [2024-11-23]. https://arxiv.org/abs/2205.11779. [135] KANG J W, YE D D, NIE J T, et al. Blockchain-based federated learning for industrial metaverses: incentive scheme with optimal AoI[C]//Proceedings of the 2022 IEEE International Conference on Blockchain. Piscataway: IEEE, 2022: 71-78. [136] RANATHUNGA T, MCGIBNEY A, REA S, et al. Blockchain-based decentralized model aggregation for cross-silo federated learning in industry 4.0[J]. IEEE Internet of Things Journal, 2023, 10(5): 4449-4461. [137] SINGH S K, YANG L T, PARK J H. FusionFedBlock: fusion of blockchain and federated learning to preserve privacy in industry 5.0[J]. Information Fusion, 2023, 90: 233-240. [138] LIU H, LI S Y, LI W Z, et al. Efficient decentralized optimization for edge-enabled smart manufacturing: a federated learning-based framework[J]. Future Generation Computer Systems, 2024, 157: 422-435. [139] XU D Y, LIU Y, WEN G H, et al. DeFedTL: a decentralized federated transfer learning method for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2025, 21(2): 1704-1713. [140] YANG Q, XU W, WANG T T, et al. Blockchain-based decentralized federated learning with on-chain model aggregation and incentive mechanism for industrial IoT[J]. IEEE Open Journal of the Communications Society, 2024, 5: 6420- 6429. [141] YU Z X, HU J, MIN G Y, et al. Proactive content caching for Internet-of-vehicles based on peer-to-peer federated learning[C]//Proceedings of the 2020 IEEE 26th International Conference on Parallel and Distributed Systems. Piscataway: IEEE, 2020: 601-608. [142] LU Y L, HUANG X H, ZHANG K, et al. Blockchain empowered asynchronous federated learning for secure data sharing in Internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4298-4311. [143] POKHREL S R, CHOI J. Federated learning with blockchain for autonomous vehicles: analysis and design challenges[J]. IEEE Transactions on Communications, 2020, 68(8): 4734-4746. [144] CHEN J H, CHEN M R, ZENG G Q, et al. BDFL: a Byzantine-fault-tolerance decentralized federated learning method for autonomous vehicle[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8639-8652. [145] BARBIERI L, SAVAZZI S, BRAMBILLA M, et al. Decentralized federated learning for extended sensing in 6G connected vehicles[J]. Vehicular Communications, 2022, 33: 100396. [146] BRAGATO F, LOTTA T, VENTURA G, et al. Towards decentralized predictive quality of service in next-generation vehicular networks[EB/OL]. [2024-11-23]. https://arxiv.org/abs/2302.11268. [147] TAN G P, YUAN H, HU H X, et al. A framework of decentralized federated learning with soft clustering and 1-bit compressed sensing for vehicular networks[J]. IEEE Internet of Things Journal, 2024, 11(13): 23617-23629. [148] Google. Tensorflow federated[EB/OL]. [2024-11-23]. https://www.tensorflow.org/federated. [149] ZILLER A, TRASK A, LOPARDO A, et al. PySyft: a library for easy federated learning[M]//Federated learning systems: towards next-generation AI. Cham: Springer, 2021: 111-139. [150] XIE Y, WANG Z, GAO D, et al. FederatedScope: a flexible federated learning platform for heterogeneity[EB/OL]. [2024-11-25]. https://arxiv.org/abs/2204.05011. [151] HE C, LI S, SO J, et al. FedML: a research library and benchmark for federated machine learning[EB/OL]. [2024-11-25]. https://arxiv.org/abs/2007.13518. [152] CALDAS S, DUDDU S M K, WU P, et al. LEAF: a benchmark for federated settings[EB/OL]. [2024-11-25]. https://arxiv.org/abs/1812.01097. [153] ROY A G, SIDDIQUI S, P?LSTERL S, et al. BrainTorrent: a peer-to-peer environment for decentralized federated learning[EB/OL]. [2024-11-25]. https://arxiv.org/abs/1905.06731. [154] PAPPAS C, CHATZOPOULOS D, LALIS S, et al. IPLS: a framework for decentralized federated learning[C]//Proceedings of the 2021 IFIP Networking Conference. Piscataway: IEEE, 2021: 1-6. [155] LI J, SHAO Y M, WEI K, et al. Blockchain assisted decentralized federated learning (BLADE-FL): performance analysis and resource allocation[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(10): 2401-2415. [156] TANG Z H, SHI S H, LI B, et al. GossipFL: a decentralized federated learning framework with sparsified and adaptive communication[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(3): 909-922. [157] MARTíNEZ BELTRáN E T, PERALES GóMEZ á L, FENG C, et al. Fedstellar: a platform for decentralized federated learning[J]. Expert Systems with Applications, 2024, 242: 122861. [158] LALITHA A, KILINC O C, JAVIDI T, et al. Peer-to-peer federated learning on graphs[EB/OL]. [2024-11-25]. https:// arxiv.org/abs/1901.11173. [159] YU G S, WANG X, SUN C J, et al. IronForge: an open, secure, fair, decentralized federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(1): 354-368. [160] JIANG B, ZHAO B, LUO F, et al. Decentralized federated learning in metacomputing based on directed acyclic graph with optimized tip selector[J]. IEEE Internet of Things Journal, 2025, 12(10): 13723-13733. |
| [1] | 晏燕, 吕雅琴, 李飞飞. 基于Huffman编码的移动终端本地差分隐私位置保护[J]. 计算机科学与探索, 2025, 19(3): 802-817. |
| [2] | 王雷蕾, 宋考, 张媛媛, 毕仁万, 熊金波. 高精度可扩展的密态隐私保护语音分类[J]. 计算机科学与探索, 2025, 19(2): 528-538. |
| [3] | 李亚红, 王淳之, 杨小东, 牛淑芬. 基于同态加密与代理重加密的可追踪联邦学习方案[J]. 计算机科学与探索, 2025, 19(11): 3108-3118. |
| [4] | 许志伟, 李海龙, 李博, 李涛, 王嘉泰, 谢学说, 董泽辉. AIGC大模型测评综述:使能技术、安全隐患和应对[J]. 计算机科学与探索, 2024, 18(9): 2293-2325. |
| [5] | 卢玉, 王静宇, 刘立新, 王浩南. 拍卖机制驱动的数据激励共享方案[J]. 计算机科学与探索, 2024, 18(8): 2203-2220. |
| [6] | 王建芳, 柴广文, 陈艺卿, 梁梦豪, 罗军伟. 融合模糊聚类和自适应去噪的推荐遗忘学习算法[J]. 计算机科学与探索, 2024, 18(11): 2969-2979. |
| [7] | 何黎松, 杨洋. 遗忘学习综述[J]. 计算机科学与探索, 2024, 18(11): 2872-2886. |
| [8] | 冯晗, 伊华伟, 李晓会, 李锐. 推荐系统的隐私保护研究综述[J]. 计算机科学与探索, 2023, 17(8): 1814-1832. |
| [9] | 林振元, 林绍辉, 姚益武, 何高奇, 王长波, 马利庄. 多教师对比知识反演的无数据模型压缩方法[J]. 计算机科学与探索, 2023, 17(11): 2721-2733. |
| [10] | 田静, 杜云明, 李帅, 刘义. Paillier加密的隐私保护群智感知任务发布算法[J]. 计算机科学与探索, 2022, 16(6): 1327-1333. |
| [11] | 韩刚, 吕英泽, 罗维, 王嘉乾. 重大疫情患者隐私数据保护方案研究[J]. 计算机科学与探索, 2022, 16(2): 359-371. |
| [12] | 李新春, 詹德川. 使用多分类器的分布式模型重用技术[J]. 计算机科学与探索, 2022, 16(10): 2310-2319. |
| [13] | 郭子菁, 罗玉川, 蔡志平, 郑腾飞. 医疗健康大数据隐私保护综述[J]. 计算机科学与探索, 2021, 15(3): 389-402. |
| [14] | 高昂, 梁英, 谢小杰, 王梓森, 李锦涛. 支持隐私保护的社交网络信息传播方法[J]. 计算机科学与探索, 2021, 15(2): 233-248. |
| [15] | 兰微,林英,包聆言,李彤,陈梦蓉,单今朝. 融入兴趣区域的差分隐私轨迹数据保护方法[J]. 计算机科学与探索, 2020, 14(1): 59-72. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||