
计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (11): 2913-2934.DOI: 10.3778/j.issn.1673-9418.2504063
刘义,吴世伟,蒋澄杰,董慧婷,吴银淼,管新如,蒋胜,张磊
出版日期:2025-11-01
发布日期:2025-10-30
LIU YI,WU Shiwei, JIANG Chengjie, DONG Huiting, WU Yinmiao, GUAN Xinru, JIANG Sheng, ZHANG Lei
Online:2025-11-01
Published:2025-10-30
摘要: 联邦学习的快速发展带来了分布式数据协同训练的新机遇。区块链为联邦学习的中心化信任、数据隐私保护、系统安全及通信开销优化等关键挑战带来了解决思路,成为联邦学习的一个重要组成部分。而共识机制作为区块链在联邦学习中的重要组成,可以对模型更新进行验证,实现去中心化聚合,使用激励确保参与者积极参与等。针对联邦学习中共识机制的差异,本文从联邦学习中的经典共识、表现共识、协议共识与协同共识四个角度对现有的联邦学习中使用的共识方案进行了比较,经典共识侧重于区块生成与基础一致性保障;表现共识根据节点本地训练表现进行参与度调节;协议共识面向联邦任务设计专属策略,实现定制化高效聚合;协同共识则支持多链多域环境下的跨链验证与一致性维护。通过对比联邦学习中不同共识的代表算法、优缺点以及适用环境,分析出当前共识机制存在隐私嵌入困难、通信负担重、异构适应性差等问题。最后提出机制融合、轻量设计、隐私集成等未来优化方向,为共识机制与联邦学习的深度融合提供理论支撑与方法参考。
刘义, 吴世伟, 蒋澄杰, 董慧婷, 吴银淼, 管新如, 蒋胜, 张磊. 共识机制在联邦学习中的研究现状[J]. 计算机科学与探索, 2025, 19(11): 2913-2934.
LIU YI, WU Shiwei, JIANG Chengjie, DONG Huiting, WU Yinmiao, GUAN Xinru, JIANG Sheng, ZHANG Lei. Research Status of Consensus Mechanisms in Federated Learning[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(11): 2913-2934.
| [1] 乔少杰, 李洲, 韩楠, 等. 人工智能赋能关系型数据库优化技术: 现状与展望[J]. 计算机学报, 2025, 48(7): 1639-1669. QIAO S J, LI Z, HAN N, et al. Artificial intelligence enabled relational database optimization techniques: the state of the art and prospects[J]. Chinese Journal of Computers, 2025, 48(7): 1639-1669. [2] THAKUR D, GUZZO A, FORTINO G, et al. Green federated learning: a new era of green aware AI[J]. ACM Computing Surveys, 2025, 57(8): 1-36. [3] 陈雪颖, 罗川, 李天瑞, 等. 基于粗糙超立方的联邦进化特征选择算法[J/OL]. 计算机研究与发展 [2025-03-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JFYZ2025030300B&dbname=CJFD&dbcode=CJFQ. CHEN X Y, LUO C, LI T R, et al. Federated evolutionary feature selection algorithm based on rough hypercube[J/OL]. Journal of Computer Research and Development [2025-03-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename= JFYZ2025030300B&dbname=CJFD&dbcode=CJFQ. [4] ZHANG C, XIE Y, BAI H, et al. A survey on federated learning[J]. Knowledge-Based Systems, 2021, 216: 106775. [5] ALBSHAIER L, ALMARRI S, ALBUALI A. Federated learning for cloud and edge security: a systematic review of challenges and AI opportunities[J]. Electronics, 2025, 14(5): 1019. [6] 朱海婷, 魏明岗, 刘丰宁, 等. 基于异步个性化联邦学习的DDoS攻击检测与缓解[J]. 计算机学报, 2025, 48(4): 808-827. ZHU H T, WEI M G, LIU F N, et al. DDoS attack detection and mitigation based on asynchronous personalized federated learning[J]. Chinese Journal of Computers, 2025, 48(4): 808-827. [7] 周弈志, 王军晓, 谢鑫, 等. 联邦长尾学习研究综述[J]. 计算机学报, 2025, 48(4): 779-807. ZHOU Y Z, WANG J X, XIE X, et al. A survey on federated long-tailed learning[J]. Chinese Journal of Computers, 2025, 48(4): 779-807. [8] 冯晗, 伊华伟, 李晓会, 等. 推荐系统的隐私保护研究综述[J]. 计算机科学与探索, 2023, 17(8): 1814-1832. FENG H, YI H W, LI X H, et al. Review of privacy-preserving research in recommendation systems[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1814-1832. [9] TSCHORSCH F, SCHEUERMANN B. Bitcoin and beyond: a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2084-2123. [10] 高威, 刘丽华, 和斌涛, 等. 区块链共识机制与改进算法研究进展[J]. 计算机应用, 2025, 45(9): 2848-2864. GAO W, LIU L H, HE B T, et al. Research advances in blockchain consensus mechanisms and improvement algorithms[J]. Journal of Computer Applications, 2025, 45(9): 2848-2864. [11] 陈丽芳, 许恺龙, 赵人喆, 等. 去中心化联邦学习综述[J]. 计算机科学与探索, 2025, 19(10): 2648-2666. CHEN L F, XU K L, ZHAO R Z, et al. Review of decentralized federated learning[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2648-2666. [12] ORABI M M, EMAM O, FAHMY H. Adapting security and decentralized knowledge enhancement in federated learning using blockchain technology: literature review[J]. Journal of Big Data, 2025, 12(1): 55. [13] 李凌霄, 袁莎, 金银玉. 基于区块链的联邦学习技术综述[J]. 计算机应用研究, 2021, 38(11): 3222-3230. LI L X, YUAN S, JIN Y Y. Review of blockchain-based federated learning[J]. Application Research of Computers, 2021, 38(11): 3222-3230. [14] ULLAH I, DENG X H, PEI X J, et al. Securing Internet of vehicles: a blockchain-based federated learning approach for enhanced intrusion detection[J]. Cluster Computing, 2025, 28(4): 256. [15] ZHAO F, YANG B C, SU Z Y, et al. A blockchain-enabled privacy-preserving and incentive mechanism-driven federated learning scheme for IoV[J]. Computer Networks, 2025, 264: 111262. [16] ARACHCHIGE P C M, BERTOK P, KHALIL I, et al. A trustworthy privacy preserving framework for machine lear-ning in industrial IoT systems[J]. IEEE Transactions on Industrial Informatics, 2020, 16(9): 6092-6102. [17] QU Y Y, POKHREL S R, GARG S, et al. A blockchained federated learning framework for cognitive computing in industry 4.0 networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2964-2973. [18] CHEN R N, DONG Y, LIU Y Z, et al. FLock: robust and privacy-preserving federated learning based on practical blockchain state channels[C]//Proceedings of the ACM on Web Conference 2025. New York: ACM, 2025: 884-895. [19] KUO T T, GABRIEL R A, OHNO-MACHADO L. Fair compute loads enabled by blockchain: sharing models by alternating client and server roles[J]. Journal of the American Medical Informatics Association, 2019, 26(5): 392-403. [20] LU Y L, HUANG X H, ZHANG K, et al. Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 5098-5107. [21] MOTHUKURI V, PARIZI R M, POURIYEH S, et al. FabricFL: blockchain-in-the-loop federated learning for trusted decentralized systems[J]. IEEE Systems Journal, 2022, 16(3): 3711-3722. [22] LIN H, CHEN K, JIANG D W, et al. Refiner: a reliable and efficient incentive-driven federated learning system powered by blockchain[J]. The VLDB Journal, 2024, 33(3): 807-831. [23] FU T X, HU J, MIN G Y, et al. Zero-knowledge proof-based consensus for blockchain-secured federated learning[EB/OL]. [2025-03-19]. https://arxiv.org/abs/2503.13255. [24] MAHATO G K, BANERJEE A, CHAKRABORTY S K, et al. Privacy preserving verifiable federated learning scheme using blockchain and homomorphic encryption[J]. Applied Soft Computing, 2024, 167: 112405. [25] 兰浩良, 王群, 徐杰, 等. 基于区块链的联邦学习研究综述[J]. 信息网络安全, 2024, 24(11): 1643-1654. LAN H L, WANG Q, XU J, et al. Review of research on blockchain-based federated learning[J]. Netinfo Security, 2024, 24(11): 1643-1654. [26] 仇健, 马海英, 王占君, 等. 联邦学习中隐私保护聚合机制综述[J]. 计算机应用研究, 2025, 42(6): 1601-1610. QIU J, MA H Y, WANG Z J, et al. Survey of privacy-preserving aggregation mechanisms in federated learning[J]. Application Research of Computers, 2025, 42(6): 1601-1610. [27] 古天龙, 李龙, 常亮, 等. 公平联邦学习及其设计研究综述[J]. 计算机学报, 2023, 46(9): 1991-2024. GU T L, LI L, CHANG L, et al. Fair federated machine learning and its design: a comprehensive survey[J]. Chinese Journal of Computers, 2023, 46(9): 1991-2024. [28] 孙恩昌, 董潇炫, 张卉, 等. 区块链赋能联邦学习: 方法、挑战与展望[J]. 北京工业大学学报, 2025, 51(3): 337-349. SUN E C, DONG X X, ZHANG H, et al. Blockchain enabled federated learning: approaches, challenges, and prospects[J]. Journal of Beijing University of Technology, 2025, 51(3): 337-349. [29] CAI Z J, CHEN J G, FAN Y T, et al. Blockchain-empowered federated learning: benefits, challenges, and solutions[J]. IEEE Transactions on Big Data, 2025, 11(5): 2244-2263. [30] NGUYEN D C, DING M, PATHIRANA P N, et al. Federated learning for Internet of things: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1622-1658. [31] QU Y Y, UDDIN M P, GAN C Q, et al. Blockchain-enabled federated learning: a survey[J]. ACM Computing Surveys, 2023, 55(4): 1-35. [32] ZHU J C, CAO J N, SAXENA D, et al. Blockchain-empowered federated learning: challenges, solutions, and future directions[J]. ACM Computing Surveys, 2023, 55(11): 1-31. [33] 葛丽娜, 王明禹, 田蕾. 联邦学习的高效性研究综述[J]. 计算机应用, 2025, 45(8): 2387-2398. GE L N, WANG M Y, TIAN L. Review of research on efficiency of federated learning[J]. Journal of Computer Applications, 2025, 45(8): 2387-2398. [34] 曹天涯, 张宇帆, 贾俊杰. 一种有效提高数据可用性的联邦学习隐私保护算法[J/OL]. 计算机工程 [2025-03-19]. https://link.cnki.net/doi/10.19678/j.issn.1000-3428.0070294. CAO T Y, ZHANG Y F, JIA J J. A federal learning privacy protection algorithm to effectively improve data availability[J/OL]. Computer Engineering [2025-03-19]. https://link.cnki. net/doi/10.19678/j.issn.1000-3428.0070294. [35] 王华华, 黄烨霞, 李玲, 等. 无蜂窝网络中的联邦学习用户调度与资源优化[J/OL]. 计算机工程 [2025-03-19]. https://link.cnki.net/doi/10.19678/j.issn.1000-3428. 0069877. WANG H H, HUANG Y X, LI L, et al. Federated learning user scheduling and resource optimization in cell-free networks[J/OL]. Computer Engineering [2025-03-19]. https://link.cnki.net/doi/10.19678/j.issn.1000-3428.0069877. [36] KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. Foundations and Trends? in Machine Learning, 2021, 14(1/2): 1-210. [37] SAHRAOUI S, BACHIR A. Lightweight consensus mechanisms in the Internet of blockchained things: thorough analysis and research directions[J]. Digital Communications and Networks, 2025, 11(4): 1246-1261. [38] XIE M Y, LIU J, CHEN S Y, et al. A survey on blockchain consensus mechanism: research overview, current advances and future directions[J]. International Journal of Intelligent Computing and Cybernetics, 2023, 16(2): 314-340. [39] XIONG H L, CHEN M X, WU C H, et al. Research on progress of blockchain consensus algorithm: a review on recent progress of blockchain consensus algorithms[J]. Future Internet, 2022, 14(2): 47. [40] 刘惠文, 谢才炳, 邓小鸿. 基于信用的区块链共识算法对比研究[J]. 计算机应用研究, 2023, 40(2): 321-327. LIU H W, XIE C B, DENG X H. Comparative research on blockchain consensus algorithms based on credit[J]. Application Research of Computers, 2023, 40(2): 321-327. [41] WANG B, TIAN Z, LIU X R, et al. A multi-center federated learning mechanism based on consortium blockchain for data secure sharing[J]. Knowledge-Based Systems, 2025, 310: 112962. [42] QU Y Y, GAO L X, LUAN T H, et al. Decentralized privacy using blockchain-enabled federated learning in fog computing[J]. IEEE Internet of Things Journal, 2020, 7(6): 5171-5183. [43] ZHANG W S, LU Q H, YU Q Y, et al. Blockchain-based federated learning for device failure detection in industrial IoT[J]. IEEE Internet of Things Journal, 2021, 8(7): 5926-5937. [44] LIU Y H, QU Y Y, XU C H, et al. Blockchain-enabled asynchronous federated learning in edge computing[J]. Sensors, 2021, 21(10): 3335. [45] QUANG HIEU N, TRAN T A, NGUYEN C L, et al. Deep reinforcement learning for resource management in blockchain-enabled federated learning network[J]. IEEE Networking Letters, 2022, 4(3): 137-141. [46] YU H F, CAI L, MIN H, et al. Advancing medical data classification through federated learning and blockchain incentive mechanism: implications for modern software systems and applications[J]. The Journal of Supercomputing, 2024, 80(8): 10469-10484. [47] DOUCEUR J R. The sybil attack[C]//Proceedings of the 2002 International Workshop on Peer-to-Peer Systems. Berlin, Heidelberg: Springer, 2002. [48] SHAYAN M, FUNG C, YOON C J M, et al. Biscotti: a blockchain system for private and secure federated learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(7): 1513-1525. [49] CHEN H, ALI ASIF S, PARK J, et al. Robust blockchained federated learning with model validation and proof-of-stake inspired consensus[EB/OL]. [2025-03-16]. https://arxiv.org/abs/2101.03300. [50] DE BRITO GON?ALVES J P, DA SILVA VILLA?A R. A blockchained incentive architecture for federated learning[C]//Proceedings of the 2022 IEEE International Conference on Blockchain. Piscataway: IEEE, 2022: 482-487. [51] WANG T J, DONG Z Y. Blockchain-based clustered federated learning for non-intrusive load monitoring[J]. IEEE Transactions on Smart Grid, 2024, 15(2): 2348-2361. [52] DAI W, LIANG Z H, QIN M M, et al. Research on validation and incentive mechanism of federated learning model based on blockchain[C]//Proceedings of the 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2024: 385-390. [53] KORKMAZ C, KOCAS H E, UYSAL A, et al. Chain FL: decentralized federated machine learning via blockchain[C]//Proceedings of the 2nd International Conference on Blockchain Computing and Applications. Piscataway: IEEE, 2020: 140-146. [54] RAMANAN P, NAKAYAMA K. BAFFLE: blockchain based aggregator free federated learning[C]//Proceedings of the 2020 IEEE International Conference on Blockchain. Piscataway: IEEE, 2020: 72-81. [55] HE X Q, CHEN Q B, TANG L, et al. CGAN-based collaborative intrusion detection for UAV networks: a blockchain-empowered distributed federated learning approach[J]. IEEE Internet of Things Journal, 2023, 10(1): 120-132. [56] ZHANG C, XU Y, ELAHI H, et al. A blockchain-based model migration approach for secure and sustainable federated learning in IoT systems[J]. IEEE Internet of Things Journal, 2023, 10(8): 6574-6585. [57] YANG Q, XU W, WANG T T, et al. Blockchain-based decentralized federated learning with on-chain model aggregation and incentive mechanism for industrial IoT[J]. IEEE Open Journal of the Communications Society, 2024, 5: 6420-6429. [58] FAN S Z, ZHANG H B, ZENG Y C, et al. Hybrid blockchain-based resource trading system for federated learning in edge computing[J]. IEEE Internet of Things Journal, 2021, 8(4): 2252-2264. [59] HU Q, WANG Z L, XU M H, et al. Blockchain and federated edge learning for privacy-preserving mobile crowdsensing[J]. IEEE Internet of Things Journal, 2023, 10(14): 12000-12011. [60] ZHANG F, GUO S Y, QIU X S, et al. Federated learning meets blockchain: state channel-based distributed data-sharing trust supervision mechanism[J]. IEEE Internet of Things Journal, 2023, 10(14): 12066-12076. [61] KANG J W, XIONG Z H, NIYATO D, et al. Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory[J]. IEEE Internet of Things Journal, 2019, 6(6): 10700-10714. [62] CAI H Y, GAO L J, WANG J H, et al. Reliable incentive mechanism in hierarchical federated learning based on two-way reputation and contract theory[J]. Future Generation Computer Systems, 2024, 159: 533-544. [63] 朱建明, 张沁楠, 高胜, 等. 基于区块链的隐私保护可信联邦学习模型[J]. 计算机学报, 2021, 44(12): 2464-2484. ZHU J M, ZHANG Q N, GAO S, et al. Privacy preserving and trustworthy federated learning model based on blockchain[J]. Chinese Journal of Computers, 2021, 44(12): 2464-2484. [64] LUO Y H, GONG B, ZHU H T, et al. A trusted federated incentive mechanism based on blockchain for 6G network data security[J]. Applied Sciences, 2023, 13(19): 10586. [65] XU G X, ZHOU Z J, DONG J N, et al. A blockchain-based federated learning scheme for data sharing in industrial Internet of things[J]. IEEE Internet of Things Journal, 2023, 10(24): 21467-21478. [66] 乔少杰, 林羽丰, 韩楠, 等. 基于贡献度证明共识机制的去中心化联邦学习框架[J]. 软件学报, 2023, 34(3): 1148-1167. QIAO S J, LIN Y F, HAN N, et al. Decentralized federated learning framework based on proof-of-contribution consensus mechanism[J]. Journal of Software, 2023, 34(3): 1148-1167. [67] QIAO S J, JIANG Y H, HAN N, et al. LBFL: a lightweight blockchain-based federated learning framework with proof-of-contribution committee consensus[J]. IEEE Transactions on Big Data, 2025, 11(4): 1745-1759. [68] QIN Z Q, YE J, MENG J, et al. Privacy-preserving blockchain-based federated learning for marine Internet of things[J]. IEEE Transactions on Computational Social Systems, 2022, 9(1): 159-173. [69] QU G J, WU H M, CUI N C. Joint blockchain and federated learning-based offloading in harsh edge computing environments[C]//Proceedings of the 2021 International Workshop on Big Data in Emergent Distributed Environments. New York: ACM, 2021: 1-6. [70] 陈乃月, 金一, 李浥东, 等. 基于区块链的公平性联邦学习模型[J]. 计算机工程, 2022, 48(6): 33-41. CHEN N Y, JIN Y, LI Y D, et al. Federated learning model with fairness based on blockchain[J]. Computer Engineering, 2022, 48(6): 33-41. [71] JI S, ZHANG J L, ZHANG Y J, et al. LAFED: a lightweight authentication mechanism for blockchain-enabled federated learning system[J]. Future Generation Computer Systems, 2023, 145: 56-67. [72] KASYAP H, MANNA A, TRIPATHY S. An efficient blockchain assisted reputation aware decentralized federated learning framework[J]. IEEE Transactions on Network and Service Management, 2023, 20(3): 2771-2782. [73] WANG P F, ZHAO Y A, OBAIDAT M S, et al. Blockchain-enhanced federated learning market with social Internet of things[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3405-3421. [74] WANG J R, SHI Y, HU D C, et al. CoCFL: a lightweight blockchain-based federated learning framework in IoT context[C]//Proceedings of the 2024 IEEE 44th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2024: 1086-1096. [75] 王金鹏, 戴欢, 李凯程, 等. 基于联盟链的可信联邦学习方法[J]. 计算机工程与设计, 2023, 44(12): 3545-3553. WANG J P, DAI H, LI K C, et al. Trustworthy federated learning method based on consortium blockchain[J]. Computer Engineering and Design, 2023, 44(12): 3545-3553. [76] ZHAO Y, QU Y Y, XIANG Y, et al. Context-aware consensus algorithm for blockchain-empowered federated learning[J]. IEEE Transactions on Cloud Computing, 2024, 12(2): 491-503. [77] YANG X H, LI T C. A blockchain-based federated learning framework for secure aggregation and fair incentives[J]. Connection Science, 2024, 36(1): 2316018. [78] LIU S, WANG X, HUI L S, et al. Blockchain-based decentralized federated learning method in edge computing environment[J]. Applied Sciences, 2023, 13(3): 1677. [79] AQLEEM ABBAS S M, KHATTAK M A K, BOULILA W, et al. UAVs and blockchain synergy: enabling secure reputation-based federated learning in smart cities[J]. IEEE Access, 2024, 12: 154035-154053. [80] AN J, TANG S Y, SUN X Y, et al. FREB: participant selection in federated learning with reputation evaluation and blockchain[J]. IEEE Transactions on Services Computing, 2024, 17(6): 3685-3698. [81] ZHAO Y, ZHAO J, JIANG L S, et al. Privacy-preserving blockchain-based federated learning for IoT devices[J]. IEEE Internet of Things Journal, 2021, 8(3): 1817-1829. [82] 方晨, 郭渊博, 王一丰, 等. 基于区块链和联邦学习的边缘计算隐私保护方法[J]. 通信学报, 2021, 42(11): 28-40. FANG C, GUO Y B, WANG Y F, et al. Edge computing privacy protection method based on blockchain and federated learning[J]. Journal on Communications, 2021, 42(11): 28-40. [83] WANG W L, WANG Y J, HUANG Y, et al. Privacy protection federated learning system based on blockchain and edge computing in mobile crowdsourcing[J]. Computer Networks, 2022, 215: 109206. [84] 徐浩曈, 刘立新, 王静宇, 等. 一种基于区块链的联邦学习贡献评价方案[J]. 计算机应用研究, 2023, 40(8): 2258-2265. XU H T, LIU L X, WANG J Y, et al. Blockchain-based contribution evaluation scheme for federated learning[J]. Application Research of Computers, 2023, 40(8): 2258-2265. [85] MAZID A, KIRMANI S, ABID M, et al. A secure and efficient framework for Internet of medical things through blockchain driven customized federated learning[J]. Cluster Computing, 2025, 28(4): 225. [86] WANG Y T, PENG H X, SU Z, et al. A platform-free proof of federated learning consensus mechanism for sustainable blockchains[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3305-3324. [87] 张宝晨, 黄月, 孔兰菊, 等. 一种支持自适应联邦学习任务的可信公平区块链框架[J]. 计算机研究与发展, 2023, 60(11): 2504-2519. ZHANG B C, HUANG Y, KONG L J, et al. A trustworthy and fair blockchain framework supporting adaptive federated learning task[J]. Journal of Computer Research and Development, 2023, 60(11): 2504-2519. [88] 米波, 翁渊, 黄大荣, 等. 基于区块链共识激励机制的新型联邦学习系统[J]. 信息安全学报, 2024, 9(1): 15-32. MI B, WENG Y, HUANG D R, et al. A novel FL system based on consensus motivated blockchain[J]. Journal of Cyber Security, 2024, 9(1): 15-32. [89] ZHU F, HU F, ZHAO Y C, et al. A secure and fair federated learning framework based on consensus incentive mechanism[J]. Mathematics, 2024, 12(19): 3068. [90] GARCíA-MáRQUEZ M, RODRíGUEZ-BARROSO N, LUZóN M V, et al. Krum federated chain (KFC): using blockchain to defend against adversarial attacks in federated learning[EB/OL]. [2025-03-16]. https://arxiv.org/abs/2502.06917. [91] LU Y L, HUANG X H, ZHANG K, et al. Blockchain empowered asynchronous federated learning for secure data sharing in Internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4298-4311. [92] CHENG R Z, SUN Y, LIU Y J, et al. Blockchain-empowered federated learning approach for an intelligent and reliable D2D caching scheme[J]. IEEE Internet of Things Journal, 2022, 9(11): 7879-7890. [93] AYEPAH-MENSAH D, SUN G L, BOATENG G O, et al. Blockchain-enabled federated learning-based resource allocation and trading for network slicing in 5G[J]. IEEE/ACM Transactions on Networking, 2024, 32(1): 654-669. [94] WANG H B, GAO H W, MA T, et al. A hierarchical blockchain-enabled distributed federated learning system with model contribution based rewarding[J]. Digital Communications and Networks, 2025, 11(1): 35-42. [95] JIANG L, ZHENG H, TIAN H, et al. Cooperative federated learning and model update verification in blockchain-empowered digital twin edge networks[J]. IEEE Internet of Things Journal, 2022, 9(13): 11154-11167. [96] 陈乔松, 许文杰, 何小阳, 等. FedSharing: 一种双区块链激励驱动的数据分享联邦学习框架[J]. 计算机应用研究, 2023, 40(1): 33-41. CHEN Q S, XU W J, HE X Y, et al. FedSharing: federated learning framework for data sharing driven by dual blockchain incentives[J]. Application Research of Computers, 2023, 40(1): 33-41. [97] XU R H, CHEN Y. μDFL: a secure microchained decentralized federated learning fabric atop IoT networks[J]. IEEE Transactions on Network and Service Management, 2022, 19(3): 2677-2688. [98] YUAN S, CAO B, SUN Y, et al. Secure and efficient federated learning through layering and sharding blockchain[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(3): 3120-3134. [99] 王群, 李馥娟, 倪雪莉, 等. 域间路由安全增强及区块链技术的应用研究[J]. 计算机科学与探索, 2024, 18(12): 3144-3174. WANG Q, LI F J, NI X L, et al. Research on blockchain-based inter-domain routing security enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3144-3174. [100] 吴昊天, 李一凡, 崔鸿雁, 等. 基于零知识证明和区块链的联邦学习激励方案[J]. 信息网络安全, 2024, 24(1): 1-13. WU H T, LI Y F, CUI H Y, et al. Federated learning incentive scheme based on zero-knowledge proofs and blockchain[J]. Netinfo Security, 2024, 24(1): 1-13. [101] SHAWKAT M, EL-DESOKY A, ALI Z H, et al. Blockchain and federated learning based on aggregation techniques for industrial IoT: a contemporary survey[J]. Peer-to-Peer Networking and Applications, 2025, 18(4): 192. [102] ZHAO H, HU K, YUAN Z H, et al. BCTMSSF: a blockchain consensus-based traceability method for supply chain in smart factory[J]. Journal of Intelligent Manufacturing, 2025, 36(3): 1861-1877. [103] ZHANG L, CAO M, LI J, et al. A novel collaborative privacy protection scheme based on verifiable secret sharing and trust mechanism[J]. Computing, 2025, 107(1): 23. [104] YUSUF F, WIDAYANTI R, PUTRI S R, et al. A comprehensive framework for enhancing blockchain security and privacy[J]. Blockchain Frontier Technology, 2025, 4(2): 171-182. [105] 葛丽娜, 栗海澳, 王捷. 基于多级代理许可区块链的联邦边缘学习模型[J]. 通信学报, 2024, 45(4): 201-215. GE L N, LI H A, WANG J. Federated edge learning model based on multi-level proxy permissioned blockchain[J]. Journal on Communications, 2024, 45(4): 201-215. [106] 高鸿峰, 黄浩, 田有亮. 基于多方计算的安全拜占庭弹性联邦学习[J]. 通信学报, 2025, 46(2): 108-122. GAO H F, HUANG H, TIAN Y L. Secure Byzantine resilient federated learning based on multi-party computation[J]. Journal on Communications, 2025, 46(2): 108-122. [107] 史汶泽, 陆林, 秦文杰, 等. 一种可信执行环境下的联邦逻辑回归评分卡系统[J]. 应用科学学报, 2023, 41(3): 488-499. SHI W Z, LU L, QIN W J, et al. Federated logistic regression scorecard system under trusted execution environment[J]. Journal of Applied Sciences, 2023, 41(3): 488-499. [108] XING Z, ZHANG Z, ZHANG Z, et al. Zero-knowledge proof-based verifiable decentralized machine learning in communication network: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2025. DOI: 10.1109/COMST.2025.3561657. [109] LI G S, WU H Y, WU J H, et al. Efficient and secure privacy protection scheme and consensus mechanism in MEC enabled e-commerce consortium blockchain[J]. Journal of Cloud Computing, 2024, 13(1): 97. [110] NASIR N M, HASSAN S, MOHD ZAINI K. Securing permissioned blockchain-based systems: an analysis on the significance of consensus mechanisms[J]. IEEE Access, 2024, 12: 138211-138238. [111] YANG X, XIANG S W, PENG C G, et al. Federated learning incentive mechanism with supervised fuzzy Shapley value[J]. Axioms, 2024, 13(4): 254. [112] CAI L Y, DAI Y Y, HU Q W, et al. Bayesian game-driven incentive mechanism for blockchain-enabled secure federated learning in 6G wireless networks[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(5): 4951-4964. [113] FATHI F, MONTAZERI M, ARAABI B N, et al. Data-driven incentive mechanisms for federated learning in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2025, 74(7): 10175-10186. [114] GAN C Q, XIAO X H, ZHU Q Y, et al. Federated learning-driven dual blockchain for data sharing and reputation management in Internet of medical things[J]. Expert Systems, 2025, 42(2): e13714. [115] ZHANG J W, WU Y Z, PAN R. Incentive mechanism for horizontal federated learning based on reputation and reverse auction[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 947-956. [116] XING Y M, WU J, CHICLANA F, et al. An incentive mechanism-based minimum adjustment consensus model under dynamic trust relationship[J]. IEEE Transactions on Cybernetics, 2024, 54(6): 3666-3678. [117] YANG N B, TANG C M, XIONG Z H, et al. RCME: a reputation incentive committee consensus-based for matchmaking encryption in IoT healthcare[J]. IEEE Transactions on Services Computing, 2024, 17(5): 2790-2806. [118] KARIM M M, VAN D H, KHAN S, et al. AI agents meet blockchain: a survey on secure and scalable collaboration for multi-agents[J]. Future Internet, 2025, 17(2): 57. [119] FU J T, ZHANG L P, WANG L X, et al. BCT: an efficient and fault tolerance blockchain consensus transform mechanism for IoT[J]. IEEE Internet of Things Journal, 2023, 10(14): 12055-12065. [120] RAHMANI A M, TANVEER J, GHAREHCHOPOGH F S, et al. A novel offloading strategy for multi-user optimization in blockchain-enabled mobile edge computing networks for improved Internet of things performance[J]. Computers and Electrical Engineering, 2024, 119: 109514. [121] SASIKUMAR A, RAVI L, DEVARAJAN M, et al. Blockchain-assisted hierarchical attribute-based encryption scheme for secure information sharing in industrial Internet of things[J]. IEEE Access, 2024, 12: 12586-12601. [122] DEVAL V, DWIVEDI V K, DIXIT A, et al. Mobile smart contracts: exploring scalability challenges and consensus mechanisms[J]. IEEE Access, 2024, 12: 34265-34288. [123] FU Y C, NIU X J, ZHOU L L, et al. A hierarchical blockchain-enabled secure aggregation algorithm for federated learning in IoV[J]. IEEE Internet of Things Journal, 2025, 12(5): 5876-5890. [124] ZHANG L, YANG W W, YE Q C. PSI-PPER: a privacy-preserving and efficient ridesharing scheme[J]. IEEE Internet of Things Journal, 2025, 12(15): 30348-30365. [125] LI W Q, LIU Z G, CHEN J H, et al. Towards blockchain interoperability: a comprehensive survey on cross-chain solutions[J]. Blockchain: Research and Applications, 2025, 6(3): 100286. [126] REN Y J, LV Z Y, XIONG N N, et al. HCNCT: a cross-chain interaction scheme for the blockchain-based metaverse[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2024, 20(7): 1-23. [127] 李晶, 贾园园, 张磊. MuSig多重签名的实用拜占庭容错共识算法[J]. 计算机应用研究, 2025, 42(2): 352-356. LI J, JIA Y Y, ZHANG L. MuSig’s practical Byzantine fault-tolerant consensus algorithm for multi-signature[J].Computer Application Research, 2025, 42 (2): 352-356. [128] LUO D Y, CAI Q Q, SUN G, et al. Split-chain-based efficient blockchain-assisted cross-domain authentication for IoT[J]. IEEE Transactions on Network and Service Management, 2024, 21(3): 3209-3223. [129] JIANG N Q, BAI F H, HUANG L, et al. Reputation-driven dynamic node consensus and reliability sharding model in IoT blockchain[J]. Algorithms, 2022, 15(2): 28. [130] GU X R, HUANG K X, ZHANG J Z, et al. Fast federated learning in the presence of arbitrary device unavailability[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 12052-12064. [131] MARTíNEZ BELTRáN E T, PéREZ M Q, SáNCHEZ P M S, et al. Decentralized federated learning: fundamentals, state of the art, frameworks, trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2023, 25(4): 2983-3013. [132] LI C P, QIU W J, LI X X, et al. A dynamic adaptive framework for practical Byzantine fault tolerance consensus protocol in the Internet of things[J]. IEEE Transactions on Computers, 2024, 73(7): 1669-1682. [133] YUAN F J, HUANG X, ZHENG L, et al. The evolution and optimization strategies of a PBFT consensus algorithm for consortium blockchains[J]. Information, 2025, 16(4): 268. |
| [1] | 冯鑫昊, 李雷孝, 刘东江, 杜金泽, 林浩. 面向区块链数据共享的访问控制研究综述[J]. 计算机科学与探索, 2025, 19(8): 1981-2000. |
| [2] | 刘勇, 邓小鸿, 刘力汇, 石亦燃, 张丽. EG-DPoS:基于演化博弈的DPoS优化共识算法[J]. 计算机科学与探索, 2025, 19(5): 1379-1394. |
| [3] | 刘哲旭, 李雷孝, 刘东江, 杜金泽, 林浩, 史建平. 智能合约漏洞检测与修复研究综述[J]. 计算机科学与探索, 2025, 19(4): 854-876. |
| [4] | 刘义, 蒋澄杰, 杨松涛, 张磊, 吴世伟. 联邦学习中的差分隐私现状:机遇与挑战[J]. 计算机科学与探索, 2025, 19(12): 3179-3201. |
| [5] | 李亚红, 王淳之, 杨小东, 牛淑芬. 基于同态加密与代理重加密的可追踪联邦学习方案[J]. 计算机科学与探索, 2025, 19(11): 3108-3118. |
| [6] | 陈丽芳, 许恺龙, 赵人喆, 韩阳, 代琪. 去中心化联邦学习综述[J]. 计算机科学与探索, 2025, 19(10): 2648-2666. |
| [7] | 倪雪莉, 王群, 马卓. DNS安全增强及区块链技术的应用研究进展[J]. 计算机科学与探索, 2025, 19(10): 2587-2614. |
| [8] | 李嘉乐, 李雷孝, 林浩, 杜金泽, 史建平, 刘哲旭. 区块链恶意交易的层次化研究综述[J]. 计算机科学与探索, 2025, 19(10): 2559-2586. |
| [9] | 卢玉, 王静宇, 刘立新, 王浩南. 拍卖机制驱动的数据激励共享方案[J]. 计算机科学与探索, 2024, 18(8): 2203-2220. |
| [10] | 孟珍, 任冠宇, 万剑雄, 李雷孝. 车联网区块链分布式车对车计算卸载方法研究[J]. 计算机科学与探索, 2024, 18(7): 1923-1934. |
| [11] | 张璇, 李雷孝, 杜金泽, 史建平. 区块链环境下隐蔽信道研究综述[J]. 计算机科学与探索, 2024, 18(6): 1438-1456. |
| [12] | 訾玲玲, 丛鑫. 附块和离散令牌协商的容迟网络区块链交易[J]. 计算机科学与探索, 2024, 18(5): 1357-1367. |
| [13] | 白伊瑞, 田宁, 雷虹, 刘雪峰, 芦翔, 周勇. 基于DID的跨链身份认证研究综述[J]. 计算机科学与探索, 2024, 18(3): 597-611. |
| [14] | 王群, 李馥娟, 倪雪莉, 夏玲玲, 马卓. 域间路由安全增强及区块链技术的应用研究[J]. 计算机科学与探索, 2024, 18(12): 3144-3174. |
| [15] | 高春祺, 李雷孝, 史建平. 结合区块链的车联网可信认证与激励机制综述[J]. 计算机科学与探索, 2024, 18(11): 2798-2822. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||