[1] 杨超城, 严宣辉, 陈容均, 等. 融合双重注意力机制的时间序列异常检测模型[J]. 计算机科学与探索, 2024, 18(3): 740-754.
YANG C C, YAN X H, CHEN R J, et al. Time series anomaly detection model with dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 740-754.
[2] 汪军. 基于物联网技术的居民安全配电智能化监测研究[J]. 智能物联技术, 2024, 7(6): 149-152.
WANG J. Research on the intelligent monitoring of residents?? safe power distribution based on the Internet of things technology[J]. Technology of IoT & AI, 2024, 7(6): 149-152.
[3] 朱壮壮, 周治平. 高斯混合生成模型检测健康数据异常[J]. 计算机科学与探索, 2022, 16(5): 1128-1135.
ZHU Z Z, ZHOU Z P. Detection of health data based on Gaussian mixture generative model[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1128-1135.
[4] SAKURADA M, YAIRI T. Anomaly detection using autoencoders with nonlinear dimensionality reduction[C]//Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis. New York: ACM, 2014: 4-11.
[5] ZHANG Y X, WANG J D, CHEN Y Q, et al. Adaptive memory networks with self-supervised learning for unsupervised anomaly detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12068-12080.
[6] SHAUKAT K, ALAM T M, LUO S H, et al. A review of time-series anomaly detection techniques: a step to future perspectives[C]//Advances in Information and Communication: Proceedings of the 2021 Future of Information and Communication Conference. Cham: Springer, 2021: 865-877.
[7] ZHONG J J, WANG D, LI C. A nonparametric health index and its statistical threshold for machine condition monitoring[J]. Measurement, 2021, 167: 108290.
[8] GüNG?R E, ?ZMEN A. Distance and density based clustering algorithm using Gaussian kernel[J]. Expert Systems with Applications, 2017, 69: 10-20.
[9] SCHAFFER A L, DOBBINS T A, PEARSON S A. Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions[J]. BMC Medical Research Methodology, 2021, 21(1): 58.
[10] HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 387-395.
[11] LU W N, CHENG Y, XIAO C, et al. Unsupervised sequential outlier detection with deep architectures[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4321-4330.
[12] WANG K F, GOU C, DUAN Y J, et al. Generative adversarial networks: introduction and outlook[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 588-598.
[13] SU Y, ZHAO Y J, NIU C H, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 2828-2837.
[14] AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: unsupervised anomaly detection on multivariate time series[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 3395-3404.
[15] PANG G S, SHEN C H, CAO L B, et al. Deep learning for anomaly detection[J]. ACM Computing Surveys, 2022, 54(2): 1-38.
[16] DENG A L, HOOI B. Graph neural network-based anomaly detection in multivariate time series[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4027-4035.
[17] HEWAGE P, BEHERA A, TROVATI M, et al. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J]. Soft Computing, 2020, 24(21): 16453-16482.
[18] WU H, XU J, WANG J, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[C]//Advances in Neural Information Processing Systems 34, 2021: 22419-22430.
[19] ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 27268-27286.
[20] MA T H, RONG H, HAO Y S, et al. A novel sentiment polarity detection framework for Chinese[J]. IEEE Transactions on Affective Computing, 2022, 13(1): 60-74.
[21] 华哲邦, 李萌, 赵俊峰, 等. 基于时间序列分析的Web Service QoS预测方法[J]. 计算机科学与探索, 2013, 7(3): 218-226.
HUA Z B, LI M, ZHAO J F, et al. Web service QoS prediction method based on time series analysis[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(3): 218-226.
[22] YANG S B, DENG Z G, LI X F, et al. A novel hybrid model based on STL decomposition and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast[J]. Renewable Energy, 2021, 173: 531-543.
[23] TAO Z L, WEI Y W, WANG X, et al. MGAT: multimodal graph attention network for recommendation[J]. Information Processing & Management, 2020, 57(5): 102277.
[24] AWAIS M, IQBAL M T B, BAE S H. Revisiting internal covariate shift for batch normalization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(11): 5082-5092.
[25] ZHOU C, PAFFENROTH R C. Anomaly detection with robust deep autoencoders[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 665-674.
[26] SZIGETI M, FERENCI T, KOVáCS L. The use of peak over threshold methods to characterise blood glucose curves[C]//Proceedings of the 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics. Piscataway: IEEE, 2020: 199-204.
[27] ZHOU H H, MA T H, RONG H, et al. MDMN: multi-task and domain adaptation based multi-modal network for early rumor detection[J]. Expert Systems with Applications, 2022, 195: 116517.
[28] PENG K X, MA T H, JIA L, et al. Enhancing collaboration in heterogeneous multiagent systems through communication complementary graph[J]. IEEE Transactions on Cybernetics, 2024, 54(11): 6881-6894.
[29] ABDULAAL A, LIU Z H, LANCEWICKI T. Practical approach to asynchronous multivariate time series anomaly detection and localization[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 2485-2494.
[30] ALTUN K, BARSHAN B, TUN?EL O. Comparative study on classifying human activities with miniature inertial and magnetic sensors[J]. Pattern Recognition, 2010, 43(10): 3605-3620.
[31] MATHUR A P, TIPPENHAUER N O. SWaT: a water treatment testbed for research and training on ICS security[C]//Proceedings of the 2016 International Workshop on Cyber-physical Systems for Smart Water Networks. Piscataway: IEEE, 2016: 31-36.
[32] ANGRYK R A, MARTENS P C, AYDIN B, et al. Multivariate time series dataset for space weather data analytics[J]. Scientific Data, 2020, 7: 227.
[33] XIA S, SUN W, ZOU X, et al. MFAM-AD: an anomaly detection model for multivariate time series using attention mechanism to fuse multi-scale features[J]. PeerJ Computer Science, 2024, 10: e2201.
[34] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[J]. ACM SIGMOD Record, 2000, 29(2): 93-104.
[35] SCH?LKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471.
[36] NG A. Sparse autoencoder[J]. CS294A Lecture Notes, 2011, 72: 1-19.
[37] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//Proceedings of the 35th International Conference on Machine Learning, 2018: 4393-4402.
[38] ZONG B, SONG Q, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]//Proceedings of the 6th International Conference on Learning Representations, 2018.
[39] ZHAO H, WANG Y J, DUAN J Y, et al. Multivariate time-series anomaly detection via graph attention network[C]//Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 841-850.
[40] QIU C, PFROMMER T, KLOFT M, et al. Neural transformation learning for deep anomaly detection beyond images[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 8703-8714.
[41] LI Z, ZHAO Y, HU X Y, et al. ECOD: unsupervised outlier detection using empirical cumulative distribution functions[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12181-12193.
[42] XU H Z, WANG Y J, JIAN S L, et al. Calibrated one-class classification for unsupervised time series anomaly detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(11): 5723-5736.
[43] NAM Y, YOON S, SHIN Y, et al. Breaking the time-frequency granularity discrepancy in time-series anomaly detection[C]//Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 4204-4215.
[44] LAI C Y, SUN F K, GAO Z Q, et al. Nominality score conditioned time series anomaly detection by point/sequential reconstruction[C]//Advances in Neural Information Processing Systems 36, 2024.
[45] ZHANG Z W, WANG R Q, DING R, et al. Unravel anomalies: an end-to-end seasonal-trend decomposition approach for time series anomaly detection[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 5415-5419.
[46] LAI K H, ZHA D, XU J, et al. Revisiting time series outlier detection: definitions and benchmarks[C]//Proceedings of the 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track (round 1), 2021. |