计算机科学与探索 ›› 2016, Vol. 10 ›› Issue (11): 1577-1586.DOI: 10.3778/j.issn.1673-9418.1604045

• 人工智能与模式识别 • 上一篇    下一篇

多流形的非监督线性差分投影算法

杨章静1,万鸣华1,2,3+,王巧丽4,张凡龙1,杨国为1   

  1. 1. 南京审计大学 工学院,南京 211815
    2. 南京理工大学 高维信息智能感知与系统教育部重点实验室, 南京 210094
    3. 南京晓庄学院 可信云计算与大数据分析重点实验室,南京 211171
    4. 南昌航空大学 江西省图像处理与模式识别重点实验室,南昌 330063
  • 出版日期:2016-11-01 发布日期:2016-11-04

Multi-Manifold Unsupervised Linear Differential Projection Algorithm

YANG Zhangjing1, WAN Minghua1,2,3+, WANG Qiaoli4, ZHANG Fanlong1, YANG Guowei1   

  1. 1. School of Technology, Nanjing Audit University, Nanjing 211815, China
    2. Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
    3. Key Laboratory of Trusted Cloud Computing and Big Data Analysis, Nanjing Xiaozhuang University, Nanjing 211171, China
    4. Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University, Nanchang 330063, China
  • Online:2016-11-01 Published:2016-11-04

摘要: 针对非监督线性差分投影(unsupervised linear differential projection,ULDP)在特征提取过程中存在的不足,提出了基于多流形的非监督线性差分投影(multi-manifold unsupervised linear differential projection,MULDP)算法,并将其应用于人脸识别中。MULDP首先构造出多流形局部近邻图和多流形最大全局方差,然后通过多目标最优化问题求解出嵌入在高维空间的低维流形。这种映射不仅能表示全局结构,还能表示局部结构。该算法可以得到嵌入在高维空间的低维流形,更好地实现了局部与全局结构信息的有效保持。在ORL、Yale及AR人脸库上的实验结果验证了所提算法的优越性。

关键词: 人脸识别, 特征提取, 多流形, 非监督线性差分投影(ULDP)

Abstract: To overcome the drawbacks of existing unsupervised linear differential projection (ULDP), this paper proposes a novel algorithm called multi-manifold unsupervised linear differential projection (MULDP) for face recognition. Firstly, multi-manifold local neighborhood graph and the largest global variance are constructed. Nextly, a low-  dimensional manifold embedded in high-dimensional space is calculated through the multi-objective optimization. This mapping can represent not only the global structure but also the local structure. MULDP can get the low-dimensional manifolds embedded in a high-dimensional space and maintain the local and global structural information effectively. The experimental results on the ORL, Yale and AR face databases demonstrate the superiority of the proposed algorithm.

Key words: face recognition, feature extraction, multi-manifold, unsupervised linear differential projection (ULDP)