[1] Deng Z H, Choi K S, Jiang Y Z, et al. Generalized hidden-mapping ridge regression, knowledge-leveraged inductive transfer learning for neural networks, fuzzy systems and kernel methods[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2585-2599.
[2] Zhang Y, Zhang Y T, Wang J Y, et al. Comparison of class-ification methods on EEG signals based on wavelet packet decomposition[J]. Neural Computing and Applications, 2015, 26(5): 1217-1225.
[3] Fu K, Qu J F, Chai Y, et al. Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM[J]. Biomedical Signal Processing and Control, 2014, 13: 15-22.
[4] Bhattacharyya A, Pachori R B. A multivariate approach for patient specific EEG seizure detection using empirical wavelet transform[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(9): 2003-2015.
[5] Deng Z H, Xu P, Xie L X, et al. Transductive joint-knowledge- transfer TSK FS for recognition of epileptic EEG signals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(8): 1481-1494.
[6] Jiang Y Z, Deng Z H, Chung F L, et al. Recognition of epileptic EEG signals using a novel multiview TSK fuzzy system[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(1): 3-20.
[7] Villar J R, Menéndez M, Cal E D L, et al. Identification of abnormal movements with 3D accelerometer sensors for seizure recognition[J]. Journal of Applied Logic, 2017, 24: 54-61.
[8] Sugianela Y, Sutino Q L, Herumurti D. EEG classification for epilepsy based on wavelet packet decomposition and random forest[J]. Jurnal Ilmu Komputer dan Informasi, 2018, 11: 27-33.
[9] Nasehi S, Pourghassem H, Etesami A. Online epilepsy diagnosis based on analysis of EEG signals by hybrid adaptive filtering and higher-order crossings[C]//Proceedings of the 2011 Inter-national Conference on Intelligent Computation & Bio-medical Instrumentation, Wuhan, Dec 14-17, 2011. Washington: IEEE Computer Society, 2011: 192-195.
[10] Antoniades A, Spyrou L, Took C C, et al. Deep learning for epileptic intracranial EEG data[C]//Proceedings of the 26th IEEE International Workshop on Machine Learning for Signal Processing, Salerno, Sep 13-16, 2016. Piscataway:IEEE, 2016: 1-6.
[11] Cecotti H, Gr?ser A. Convolutional neural network with embedded Fourier transform for EEG classification[C]// Proceedings of the 19th International Conference on Pattern Recognition, Tampa, Dec 8-11, 2008. Piscataway: IEEE, 2008: 1-4.
[12] Mirowski P, Madhavan D, Lecun Y, et al. Classification of patterns of EEG synchronization for seizure prediction[J]. Clinical Neurophysiology, 2009, 120(11): 1927-1940.
[13] Xu C, Tao D C, Xu C. A survey on multi-view learning[J]. arXiv:1304.5634, 2013.
[14] Sun S. A survey of multi-view machine learning[J]. Neural Computing & Applications, 2013, 23(7/8): 2031-2038.
[15] Spyrou L, Kouchaki S, Sanei S. Multiview classification and dimensionality reduction of scalp and intracranial EEG data through tensor factorisation[J]. Journal of Signal Proce-ssing Systems, 2016, 90: 273-284.
[16] Jiang Y Z, Wu D R, Deng Z H, et al. Seizure classification from EEG signals using transfer learning, semi-supervised learning and TSK fuzzy system[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(12): 2270-2284.
[17] Wang G J, Deng Z H, Choi K S. Detection of epileptic seizures in EEG signals with rule-based interpretation by random forest approach[C]//LNCS 9227: Proceedings of the 11th International Conference on Advanced Intelligent Computing Theories and Applications, Fuzhou, Aug 20-23, 2015. Berlin, Heidelberg: Springer, 2015: 738-744.
[18] Zhang Y, Liu B, Ji X M, et al. Classification of EEG signals based on autoregressive model and wavelet packet decom-position[J]. Neural Processing Letters, 2017, 45(2): 365-378.
[19] Yang C J, Deng Z H, Choi K S, et al. Takagi-Sugeno-Kang transfer learning fuzzy logic system for the adaptive reco-gnition of epileptic electroencephalogram signals[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(5): 1079-1094.
[20] Heffernan R, Paliwal K, Lyons J, et al. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning[J]. Scientific Reports, 2015, 5: 11476.
[21] Xu J, Xiang L, Liu Q S, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images[J]. IEEE Transactions on Medical Imaging, 2016, 35(1): 119-130.
[22] Suwicha J, Setha P N, Pasin I. EEG-based emotion reco-gnition using deep learning network with principal component based covariate shift adaptation[J]. The Scientific World Journal, 2014: 627892.
[23] Spencer M, Eickholt J, Cheng J. A deep learning network approach to ab initio protein secondary structure prediction[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(1): 103-112.
[24] Plis S M, Hjelm D R, Ruslan S, et al. Deep learning for neuroimaging: a validation study[J]. Frontiers in Neuroscience, 2014, 2014: 1-10.
[25] An X, Kuang D P, Guo X J, et al. A deep learning method for classification of EEG data based on motor imagery[C]//LNCS 8590: Proceedings of the 10th International Conference on Intelligent Computing in Bioinformatics, Taiyuan, Aug 3-6, 2014. Berlin, Heidelberg: Springer, 2014: 203-210.
[26] Alipanahi B, Delong A, Weirauch M T, et al. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning[J]. Nature Biotechnology, 2015, 33(8): 831-838.
[27] Ning F, Delhomme D, LeCun Y, et al. Toward automatic phenotyping of developing embryos from videos[J]. IEEE Transactions on Image Processing, 2005, 14(9): 1360-1371.
[28] Cecotti H, Gr?ser A. Convolutional neural networks for P300 detection with application to brain-computer interfaces[J]. IEEE Transactions on Pattern Analysis and Machine Inte-lligence, 2011, 33(3): 433-445.
[29] S?nderby S K, S?nderby C K, Nielsen H, et al. Con-volutional LSTM networks for subcellular localization of proteins[C]//LNCS 9199: Proceedings of the 2nd International Conference on Algorithms for Computational Biology, Mexico City, Aug 4-5, 2015. Berlin, Heidelberg: Springer, 2015: 68-80.
[30] Graves A, Schmidhuber J. Offline handwriting recognition with multidimensional recurrent neural networks[C]//Pro-ceedings of the 23rd Annual Conference on Neural Information Processing Systems, Vancouver, Dec 8-11, 2008. Red Hook: Curran Associates, 2009: 545-552.
[31] Davidson P R, Jones R D, Peiris M T R. EEG-based lapse detection with high temporal resolution[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(5): 832-839.
[32] Lee S, Choi M, Choi H S, et al. FingerNet: deep learning-based robust finger joint detection from radiographs[C]//Proceedings of the 2015 IEEE Biomedical Circuits and Systems Conference, Atlanta, Oct 22-24, 2015. Piscataway:IEEE, 2015: 1-4.
[33] Yin Q Y, Wu S, Wang L. Incomplete multi-view clustering via subspace learning[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 19-23, 2015. New York: ACM, 2015: 383-392.
[34] Hotelling H. Relations between two sets of variates[M]//Breakthroughs in Statistics. New York: Springer, 1992: 162-190.
[35] Blum A, Mitchell T M. Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Annual Conference on Computational Learning Theory, Madison, Jul 24-26, 1998. New York: ACM, 1998: 92-100.
[36] Hardoon D R, Shawetaylor J. Sparse canonical correlation analysis[J]. Machine Learning, 2011, 83(3): 331-353.
[37] Sun S L, Shawe-Taylor J. Sparse semi-supervised learning using conjugate functions[J]. Journal of Machine Learning Research, 2010, 11: 2423-2455.
[38] Bashivan P, Bidelman G M, Yeasin M. Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity[J]. European Journal of Neuroscience, 2014, 40(12): 3774-3784.
[39] Jensen O. Frontal theta activity in humans increases with memory load in a working memory task[J]. European Journal of Neuroscience, 2002, 15(8): 1395-1399.
[40] Hu D Y, Li W, Chen X. Feature extraction of motor imagery EEG signals based on wavelet packet decomposition[C]// Proceedings of the 2011 IEEE/ICME International Con-ference on Complex Medical Engineering, Harbin, May 22-25, 2011. Piscataway: IEEE, 2011: 694-697.
[41] Liang F M, Liu C H, Carroll R J. Stochastic approximation in Monte Carlo computation[J]. Journal of the American Statistical Association, 2007, 102(477): 305-320.
[42] Deng Z H, Chung F L, Wang S T. Robust relief-feature weighting, margin maximization, and fuzzy optimization[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(4): 726-744.
[43] Zhou W, Liu Y, Yuan Q, et al. Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(12): 3375-3381.
[44] Shoeb A H. Application of machine learning to epileptic seizure onset detection and treatment[D]. Cambridge: Mas-sachusetts Institute of Technology, 2009: 184-187.
[45] Rafiuddin N, Khan Y U, Farooq O. Feature extraction and classification of EEG for automatic seizure detection[C]// Proceedings of the 2011 International Conference on Multi-media, Signal Processing and Communication Technologies, Aligarh, Dec 17-19, 2011. Piscataway: IEEE, 2011: 184-187.
[46] Khan Y U, Rafiuddin N, Farooq O. Automated seizure detection in scalp EEG using multiple wavelet scales[C]//Proceedings of the 2012 IEEE International Conference on Signal Processing, Beijing, Oct 21-25, 2012. Piscataway:IEEE, 2012: 1-5.
[47] Kiranyaz S, Ince T, Zabihi M, et al. Automated patient-specific classification of long-term electroencephalography[J]. Journal of Biomedical Informatics, 2014, 49: 16-31.
[48] Zabihi M, Kiranyaz S, Bahrami Rad A, et al. Analysis of high-dimensional phase space via Poincaré section for patient-specific seizure detection[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2016, 24(3): 386-398.
[49] Samiee K, Kiranyaz S, Gabbouj M, et al. Long-term epileptic EEG classification via 2D mapping and textural features[J]. Expert Systems with Applications, 2015, 42(20): 7175-7185.
[50] Yao X H, Li X J, Ye Q, et al. A robust deep learning app-roach for automatic seizure detection[J]. arXiv:1812.06562,2018.
[51] Yao X H, Cheng Q, Zhang G Q. A novel independent RNN approach to classification of seizures against non-seizures[J]. arXiv:1903.09326, 2019.
[52] Ke H J, Chen D, Li X L, et al. Towards brain big data classification: epileptic EEG identification with a lightweight VGGNet on global MIC[J]. IEEE Access, 2018, 6: 14722-14733. |