计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (6): 1045-1053.DOI: 10.3778/j.issn.1673-9418.1904061
黄致君,桑庆兵
HUANG Zhijun, SANG Qingbing
摘要:
针对复杂海情下需要对不同大小及种类的船舶进行检测的问题,提出一种基于深度学习的船舶检测方法,该方法主要针对区域全卷积网络(R-FCN)进行改进。首先选取ResNet50网络用于自动提取特征,并将Feature Map自动提供给改进的R-FCN;其次根据船舶识别的特性改进R-FCN,使得R-FCN在船舶检测上能够完全发挥其性能;最后根据部分类别船舶体积较小识别率低的问题,先采取最大池化层(Maxpooling)进行 改进,将小目标船舶识别率提高了4.08个百分点,之后针对ROIAlign进行改进。改进的R-FCN方法比原始的R-FCN在小目标船舶识别方面表现更优,精度共提升了13个百分点,还与目前主流的目标检测算法如Faster-RCNN等进行了对比。实验结果表明,该方法识别精度更高,速率与其他方法基本持平。