[1] ZHANG J, LIN X, NING X. SVM-based classification of segmented airborne LiDAR point clouds in urban areas[J]. Remote Sensing, 2013, 5(8): 3749-3775.
[2] SUN J, LAI Z L. Airbone LiDAR feature selection for urban classification using random forests[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1310-1313.
孙杰, 赖祖龙. 利用随机森林的城区机载 LiDAR 数据特征选择与分类[J]. 武汉大学学报(信息科学版), 2014, 39(11): 1310-1313.
[3] ZHUANG Y, LIU Y S, HE G J, et al. Contextual classification of 3D laser points with conditional random fields in urban environments[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Sep 28-Oct 2, 2015. Piscataway: IEEE, 2015: 3908-3913.
[4] LU Y, RASMUSSEN C. Simplified Markov random fields for efficient semantic labeling of 3D point clouds[C]//Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Oct 7-12, 2012. Piscataway: IEEE, 2012: 2690-2697.
[5] QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 652-660.
[6] GRIFFITHS D, BOEHM J. A review on deep learning techniques for 3D sensed data classification[J]. Remote Sensing, 2019, 11(12): 1499.
[7] XIE Y, TIAN J, ZHU X X. A review of point cloud semantic segmentation[J]. arXiv:1908.08854, 2019.
[8] ZHANG J Y, ZHAO X L, CHEN Z. Review of semantic segmentation of point cloud based on deep learning[J]. Laser & Optoelectronics Progress, 2020, 57(4): 20-38.
张佳颖, 赵晓丽, 陈正. 基于深度学习的点云语义分割综述[J]. 激光与光电子学进展, 2020, 57(4): 20-38.
[9] GUO Y, WANG H, HU Q, et al. Deep learning for 3D point clouds: a survey[J]. arXiv:1912.12033, 2019.
[10] JIANG M, WU Y, ZHAO T, et al. Pointsift: a sift-like network module for 3D point cloud semantic segmentation[J]. arXiv:1807.00652, 2018.
[11] LI J X, CHEN B M, LEE G H. SO-net: self-organizing network for point cloud analysis[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 9397-9406.
[12] LIANG Z D, YANG M, DENG L Y, et al. Hierarchical depthwise graph convolutional neural network for 3D semantic segmentation of point clouds[C]//Proceedings of the 2019 International Conference on Robotics and Automation, Montreal, May 20-24, 2019. Piscataway: IEEE, 2019: 8152-8158.
[13] HUANG Q G, WANG W Y, NEUMANN U. Recurrent slice networks for 3D segmentation of point clouds[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2626-2635.
[14] LI Y Y, BU R, SUN M C, et al. PointCNN: convolution on x-transformed points[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Montréal, Dec 3-8, 2018: 828-838.
[15] ZHANG Z Y, HUA B S, YEUNG S K. Shellnet: efficient point cloud convolutional neural networks using concentric shells statistics[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1607-1616.
[16] ZHANG J Y, ZHAO X L, CHEN Z, et al. A review of deep learning-based semantic segmentation for point cloud[J]. IEEE Access, 2019, 7: 179118-179133.
[17] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5099-5108.
[18] HU Q Y, YANG B, XIE L H, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11105-11114.
[19] WANG L, HUANG Y C, HOU Y L, et al. Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 10296-10305.
[20] YE X Q, LI J M, HUANG H X, et al. 3D recurrent neural networks with context fusion for point cloud semantic segmentation[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 415-430.
[21] THOMAS H, QI C R, DESCHAUD J E, et al. Kpconv: flexible and deformable convolution for point clouds[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6410-6419.
[22] MAO J G, WANG X G, LI H S. Interpolated convolutional networks for 3D point cloud understanding[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1578-1587.
[23] WU W, QI Z, FUXIN L. Pointconv: deep convolutional networks on 3D point clouds[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9621-9630.
[24] WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
[25] TE G, HU W, ZHENG A, et al. RGCNN: regularized graph CNN for point cloud segmentation[C]//Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Oct 22-26, 2018. New York: ACM, 2018: 746-754.
[26] LIU J X, NI B B, LI C Y, et al. Dynamic points agglomeration for hierarchical point sets learning[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 7545-7554.
[27] BOULCH A. ConvPoint: continuous convolutions for point cloud processing[J]. Computers & Graphics, 2020, 88: 24-34.
[28] ENGELMANN F, KONTOGIANNI T, HERMANS A, et al. Exploring spatial context for 3D semantic segmentation of point clouds[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 716-724.
[29] WANG S L, SUO S, MA W C, et al. Deep parametric continuous convolutional neural networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2589-2597.
[30] XU Y F, FAN T Q, XU M Y, et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters[C]//LNCS 11212: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 90-105.
[31] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 945-953.
[32] QI C R, SU H, NIE?NER M, et al. Volumetric and multi-view CNNs for object classification on 3D data[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 5648-5656.
[33] FENG Y F, ZHANG Z Z, ZHAO X B, et al. GVCNN: group-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 264-272.
[34] ZENG A, YU K T, SONG S R, et al. Multi-view self- supervised deep learning for 6D pose estimation in the Amazon picking challenge[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Singapore, May 29-Jun 3, 2017. Piscataway: IEEE, 2017: 1386-1383.
[35] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-net classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1106-1114.
[36] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[37] MA L N, STüCKLER J, KERL C, et al. Multi-view deep learning for consistent semantic mapping with RGB-D cameras[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Sep 24-28, 2017. Piscataway: IEEE, 2017: 598-605.
[38] BOULCH A, GUERRY J, LE SAUX B, et al. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks[J]. Computers & Graphics, 2018, 71: 189-198.
[39] GUERRY J, BOULCH A, LE SAUX B, et al. SnapNet-R: consistent 3D multi-view semantic labeling for robotics[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 669-678.
[40] WU B C, WAN A, YUE X Y, et al. SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3DLiDAR point cloud[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, May 21-25, 2018. Piscataway: IEEE, 2018: 1887-1893.
[41] WU B C, ZHOU X Y, ZHAO S C, et al. SqueezeSegv2: improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud[C]//Proceedings of the 2019 International Conference on Robotics and Automation, Montreal, May 20-24, 2019. Piscataway: IEEE, 2019: 4376-4382.
[42] MATURANA D, SCHERER S A. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Sep 28-Oct 2, 2015. Piscataway: IEEE, 2015: 922-928.
[43] WU Z R, SONG S R, KHOSLA A, et al. 3DshapeNets: a deep representation for volumetric shapes[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1912-1920.
[44] DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2432-2443.
[45] ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//LNCS 9901: Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Oct 17-21, 2016. Berlin, Heidelberg: Springer, 2016: 424-432.
[46] LI Y Y, PIRK S, SU H, et al. FPNN: field probing neural networks for 3D data[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2016, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 307-315.
[47] TCHAPMI L P, CHOY C B, ARMENI I, et al. SEGCloud: semantic segmentation of 3D point clouds[C]//Proceedings of the 2017 International Conference on 3D Vision, Qingdao, Oct 10-12, 2017: 537-547.
[48] RIEGLER G, OSMAN ULUSOY A O, GEIGER A. OctNet: learning deep 3D representations at high resolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6620-6629.
[49] XU Y, HOEGNER L, TUTTAS S, et al. Voxel- and graph-based point cloud segmentation of 3D scenes using perceptual grouping laws[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 5: 43-50.
[50] KLOKOV R, LEMPITSKY V S. Escape from cells: deep Kd-networks for the recognition of 3D point cloud models[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 863-872.
[51] ZENG W, GEVERS T. 3DContextNet: K-d tree guided hierarchical learning of point clouds using local and global contextual cues[C]//LNCS 11131: Proceedings of the ECCV 2018 Workshops on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 314-330.
[52] MENG H Y, GAO L, LAI Y K, et al. VV-Net: voxel VAE net with group convolutions for point cloud segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 8499-8507.
[53] WANG L, HUANG Y, SHAN J, et al. MSNet: multi-scale convolutional network for point cloud classification[J]. Remote Sensing, 2018, 10(4): 612.
[54] ZHAO H S, JIANG L, FU C W, et al. PointWeb: enhancing local neighborhood features for point cloud processing[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5565-5573.
[55] XIE S N, LIU S N, CHEN Z Y, et al. Attentional shapecontextnet for point cloud recognition[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 4606-4615.
[56] WANG C, SAMARI B, SIDDIQI K. Local spectral graph convolution for point set feature learning[C]//LNCS 11208: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 56-71.
[57] SIMONOVSKY M, KOMODAKIS N. Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 29-38.
[58] LU Q, CHEN C, XIE W, et al. PointNGCNN: deep convolutional networks on 3D point clouds with neighborhood graph filters[J]. Computers & Graphics, 2020, 86: 42-51.
[59] LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 4558-4567.
[60] HUA B S, TRAN M K, YEUNG S K. Pointwise convolutional neural networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 984-993.
[61] KOMARICHEV A, ZHONG Z, HUA J. A-CNN: annularly convolutional neural networks on point clouds[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7421-7430.
[62] HIMMELSBACH M, HUNDELSHAUSEN F V, WüNS-CHEH J. Fast segmentation of 3D point clouds for ground vehicles[C]//Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, La Jolla, Jun 21-24, 2010. Piscataway: IEEE, 2010: 560-565.
[63] LIU F Y, LI S P, ZHANG L Q, et al. 3DCNN-DQN-RNN: a deep reinforcement learning framework for semantic parsing of large-scale 3D point clouds[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5678-5687.
[64] YANG J C, ZHANG Q, NI B B, et al. Modeling point clouds with self-attention and gumbel subset sampling[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3323-3332.
[65] ZHAO C X, ZHOU W H, LU L, et al. Pooling scores of neighboring points for improved 3D point cloud segmentation[C]//Proceedings of the 2019 IEEE International Conference on Image Processing, Taipei, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 1475-1479.
[66] CHEN C, FRAGONARA L Z, TSOURDOS A. GAPNet: graph attention based point neural network for exploiting local feature of point cloud[J]. arXiv:1905.08705, 2019.
[67] WANG X L, LIU S, SHEN X Y, et al. Associatively segmenting instances and semantics in point clouds[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4096-4105.
[68] PHAM Q H, NGUYEN T, HUA B S, et al. JSIS3D: joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 8827-8836.
[69] LAI K, BO L, REN X F, et al. A large-scale hierarchical multi-view RGB-D object dataset[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, May 9-13, 2011. Piscataway: IEEE, 2011: 1817-1824.
[70] SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//LNCS 7576: Proceedings of the 12th European Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 746-760.
[71] XIAO J X, OWENS A, TORRALBA A. SUN3D: a database of big spaces reconstructed using SFM and object labels[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Dec 1-8, 2013. Washington: IEEE Computer Society, 2013: 1625-1632.
[72] SINGH A, SHA J, NARAYAN K S, et al. Bigbird: a large-scale 3D database of object instances[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation, Hong Kong, China, May 31-Jun 7, 2014. Piscataway: IEEE, 2014: 509-516.
[73] MARTíNEZ-GóMEZ J, GARCíA-VAREA I, CAZORLA M, et al. ViDRILO: the visual and depth robot indoor localization with objects information dataset[J]. The International Journal of Robotics Research, 2015, 34(14): 1681-1687.
[74] SONG S R, LICHTENBERG S P, XIAO J X. SUN RGB-D: a RGB-D scene understanding benchmark suite[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 567-576.
[75] CHANG A, DAI A, FUNKHOUSER T, et al. Matterport3D: learning from RGB-D data in indoor environments[J]. arXiv: 1709.06158, 2017.
[76] CHEN X, GOLOVINSKIY A, FUNKHOUSER T. A benchmark for 3D mesh segmentation[J]. ACM Transactions on Graphics, 2009, 28(3): 1-12.
[77] YI L, KIM V G, CEYLAN D, et al. A scalable active framework for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 2016, 35(6): 1-12.
[78] ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 1534-1543.
[79] WANG C, HOU S, WEN C, et al. Semantic line framework-based indoor building modeling using backpacked laser scanning point cloud[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143: 150-166.
[80] MUNOZ D, BAGNELL J A, VANDAPEL N, et al. Contextual classification with functional max-margin Markov networks[C]//Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Washington: IEEE Computer Society, 2009: 975-982.
[81] DE DEUGE M, QUADROS A, HUNG C, et al. Unsupervised feature learning for classification of outdoor 3D scans[C]//Proceedings of the 2013 Australasian Conference on Robitics and Automation, Sydney, Dec 2-4, 2013: 1-9.
[82] SERNA A, MARCOTEGUI B, GOULETTE F, et al. Paris-rue-Madame database: a 3D mobile laser scanner dataset for benchmarking urban detection, segmentation and classification methods[C]//Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods, Angers, Mar 6-8, 2014: 819-824.
[83] BRéDIF M, VALLET B, SERNA A, et al. TerraMobilita/IQmulus urban point cloud classification benchmark[C]//Workshop on Processing Large Geospatial Data, Cardiff, 2014.
[84] RIEMENSCHNEIDER H, BóDIS-SZOMORú A, WEISSENBERG J, et al. Learning where to classify in multi-view semantic segmentation[C]//LNCS 8693: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Berlin, Heidelberg: Springer, 2014: 516-532.
[85] GEHRUNG J, HEBEL M, ARENS M, et al. An approach to extract moving objects from MLS data using a volumetric background representation[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 4: 107.
[86] GAIDON A, WANG Q, CABON Y, et al. Virtual worlds as proxy for multi-object tracking analysis[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 4340-4349.
[87] HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3D. net: a new large-scale point cloud classification benchmark[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017: 91-98.
[88] ROYNARD X, DESCHAUD J E, GOULETTE F. Paris-Lille-3D: a large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification[J]. The International Journal of Robotics Research, 2018, 37(6): 545-557.
[89] SONG X B, WANG P, ZHOU D F, et al. ApolloCar3D: a large 3D car instance understanding benchmark for autonomous driving[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5452-5462.
[90] BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9296-9306.
[91] NIEMEYER J, ROTTENSTEINER F, SOERGEL U. Contextual classification of LiDAR data and building object detection in urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87: 152-165.
[92] BOSCH M, FOSTER K, CHRISTIE G, et al. Semantic stereo for incidental satellite images[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, Waikoloa Village, Jan 7-11, 2019. Piscataway: IEEE, 2019: 1524-1532.
[93] DONG Z, LIANG F, YANG B, et al. Registration of large-scale terrestrial laser scanner point clouds: a review and benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 327-342.
[94] TATARCHENKO M, PARK J, KOLTUN V, et al. Tangent convolutions for dense prediction in 3D[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 3887-3896.
[95] KIRILLOV A, HE K, GIRSHICK R, et al. Panoptic segmentation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 9404-9413.
[96] KIRILLOV A, GIRSHICK R, HE K, et al. Panoptic feature pyramid networks[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 6399-6408.
[97] LIU H Y, PENG C, YU C Q, et al. An end-to-end network for panoptic segmentation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 6172-6181.
[98] YANG T, COLLINS M D, ZHU Y, et al. DeeperLab: single-shot image parser[J]. arXiv:1902.05093, 2019.
[99] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 3213-3223.
[100] CAESAR H, UIJLINGS J, FERRARI V. COCO-Stuff: thing and stuff classes in context[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 1209-1218.
[101] DE GEUS D, MELETIS P, DUBBELMAN G. Fast panoptic segmentation network[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1742-1749.
[102] ENGELMANN F, KONTOGIANNI T, LEIBE B. Dilated point convolutions: on the receptive field of point convo-lutions[J]. arXiv:1907.12046, 2019.
[103] SHEN Y R, FENG C, YANG Y Q, et al. Mining point cloud local structures by kernel correlation and graph pooling[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 4548-4557.
[104] JIANG L, ZHAO H S, LIU S, et al. Hierarchical point-edge interaction network for point cloud semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 10433-10441.
[105] ZHAO Y, BIRDAL T, DENG H, et al. 3D point capsule networks[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1009-1018.
[106] CHERAGHIAN A, RAHMAN S, PETERSSON L. Zero-shot learning of 3D point cloud objects[C]//Proceedings of the 16th International Conference on Machine Vision Applications, Tokyo, May 27-31, 2019. Piscataway: IEEE, 2019: 1-6.
[107] LANDRIEU L, BOUSSAHA M. Point cloud oversegmentation with graph-structured deep metric learning[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 7440-7449.
[108] JARITZ M, GU J, SU H. Multi-view pointnet for 3D scene understanding[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Oct 27-28, 2019. Piscataway: IEEE, 2019: 3995-4003.
[109] LI Z, GAN Y K, LIANG X D, et al. LSTM-CF: unifying context modeling and fusion with LSTMs for RGB-D scene labeling[C]//LNCS 9906: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 541-557.
[110] LIU X Y, YAN M Y, BOHG J. MeteorNet: deep learning on dynamic 3D point cloud sequences[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9246-9255. |