[1] VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154.
[2] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Com-puter Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-26, 2005. Washington: IEEE Computer Society, 2005: 886-893.
[3] FELZENSZWALB P F, MCALLESTER D A, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 24-26, 2008. Washington: IEEE Computer Society, 2008: 1-8.
[4] GIRSHICK R B, DONAHUE J, DARRELLAND T, et al. Rich feature hierarchies for accurate detection and semantic seg-mentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587.
[5] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Piscataway: IEEE, 2015: 1440-1448.
[7] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 2015, 39(6): 1137-1149.
[8] DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 2016 Annual Conference on Neural Information Process-ing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 379-387.
[9] REDMON J, DIVVALA S K, GIRSHICK R B, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 779-788.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 21-37.
[11] HUANG L, YANG Y, DENG Y, et al. DenseBox: unifying landmark localization with end to end object detection[J]. arXiv:1509.04874, 2015.
[12] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6517-6525.
[13] REDMON J, FARHADI A. YOLOV3: an incremental improve-ment[J]. arXiv:1804.02767, 2018.
[14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 770-778.
[15] WANG D W, YANG X, HAN P F, et al. Panoramic video mo-tion small target detection algorithm in complex background[J/OL]. Control and Decision (2019-09-29) [2019-11-05].https://doi.org/10.13195/j.kzyjc.2019.0686.
王殿伟, 杨旭, 韩鹏飞, 等. 复杂背景下全景视频运动小目标检测算法[J/OL]. 控制与决策(2019-09-29) [2019-11-05]. https://doi.org/10.13195/j.kzyjc.2019.0686.
[16] GE W, SHI Z W. Application of improved YOLOV3 algo-rithm in pedestrian identification[J]. Computer Engineering and Applications, 2019, 55(20): 128-133.
葛雯, 史正伟. 改进YOLOV3算法在行人识别中的应用[J]. 计算机工程与应用, 2019, 55(20): 128-133.
[17] KONG F F, SONG B B. Improved YOLOV3 panoramic traffic monitoring target detection[J]. Computer Engineering and Applications, 2020, 56(8): 20-25.
孔方方, 宋蓓蓓. 改进YOLOV3的全景交通监控目标检测[J]. 计算机工程与应用, 2020, 56(8): 20-25.
[18] WU D, WU Q, YIN X, et al. Lameness detection of dairy cows based on the YOLOV3 deep learning algorithm and a relative step size characteristic vector[J]. Biosystems Engi-neering, 2020, 189: 150-163.
[19] GAO Z, LI S B, CHEN J N, et al. Pedestrian detection method based on YOLO network[J]. Computer Engineering, 2018, 44(5): 215-219.
高宗, 李少波, 陈济楠, 等. 基于YOLO网络的行人检测方法[J]. 计算机工程, 2018, 44(5): 215-219.
[20] WANG X K, JIANG H X, LIN K Y. Remote sensing image ship detection based on modified YOLO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020(6): 1184-1191.
王玺坤, 姜宏旭, 林珂玉. 基于改进型YOLO算法的遥感图像舰船检测[J]. 北京航空航天大学学报, 2020(6): 1184-1191.
[21] LI D J, LI D G, YANG L. Application of convolutional neural network in dynamic gesture tracking[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 841-847.
李东洁, 李东阁, 杨柳. 卷积神经网络在动态手势跟踪中的应用[J]. 计算机科学与探索, 2020, 14(5): 841-847.
[22] WANG X L, XIAO T T, JIANG Y N, et al. Repulsion loss: detecting pedestrians in a crowd[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 7774-7783.
[23] MILAN A, LEAL-TAIXE L, REID I, et al. MOT16: a bench-mark for multi-object tracking[J]. arXiv:1603.00831, 2016. |