[1] ZHANG K, GUO Y R, WANG X S, et al. Channel-wise and feature-points reweights densenet for image classification[C]//Proceedings of the 2019 IEEE International Conference on Image Processing, Taiwan, China, Sep 22, 2019. Piscataway: IEEE, 2019: 410-414.
[2] BENJILALI W, GUICQUERO W, JACQUES L, et al. Hardware-friendly compressive imaging on the basis of random modulations & permutations for image acquisition and classification[C]//Proceedings of the 2019 IEEE International Conference on Image Processing, Taiwan, China, Sep 22, 2019. Piscataway: IEEE, 2019: 2085-2089.
[3] ZHANG Z Y, CUI Z, XU C Y, et al. Pattern-affinitive propagation across depth, surface normal and semantic segmentation [C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16, 2019. Washington: IEEE Computer Society, 2019: 4106-4115.
[4] DING H H, JIANG X D, SHUAI B, et al. Semantic correlation promoted shape-variant context for segmentation[C]//Procee-dings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16, 2019. Washington: IEEE Computer Society, 2019: 8885-8894.
[5] DI L, JI Y F, LISCHINSKI D, et al. Multi-scale context intertwining for semantic segmentation[C]//LNCS 11207: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8, 2018. Berlin, Heidelberg: Springer, 2018: 622-638.
[6] GAO Y, WANG M, TAO D C. 3-D object retrieval and recognition with hypergraph analysis[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4290-4303.
[7] HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 597-606.
[8] CHENG M M, ZHANG F L, MITRA N J, et al. Repfinder: finding approximately repeated scene elements for image editing[J]. ACM Transactions on Graphics, 2010, 29(4): 83.
[9] CRAYE C, FILLIAT D, GOUDOU J F, et al. Environment exploration for object-based visual saliency learning[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Automation, Stockholm, May 16-21, 2016. Piscataway: IEEE, 2016: 2303-2309.
[10] CHENG M M, MITRA N J, HUANG X L, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569-582.
[11] YANG C, ZHANG L H, LU H C, et al. Saliency detection via graph-based manifold ranking[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Washington: IEEE Computer Society, 2013: 3166-3173.
[12] JIANG Z, DAVIS L S. Submodular salient region detection[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Washington: IEEE Computer Society, 2013: 2043-2050.
[13] LIU J M, MENG W H. Review on single-stage object detection algorithm based on deep learning[J]. Aero Weaponry, 2020, 27(3): 44-53.
刘俊明, 孟卫华. 基于深度学习的单阶段目标检测算法研究综述[J]. 航空兵器, 2020, 27(3): 44-53.
[14] ZHENG W C, LI X W, LIU H Z. Survey of target detection algorithms based on deep learning[C]//China Computer Users Association Network Application Branch The 22nd Annual Network New Technology and Application Conference, Suzhou, Nov 8, 2018. Beijing: China Computer Users Association, 2018: 1-4.
郑伟成, 李学伟, 刘宏哲. 基于深度学习的目标检测算法综述[C]//中国计算机用户协会网络应用分会2018年第二十二届网络新技术与应用年会, 苏州, 2018-11-08. 北京: 中国计算机用户协会, 2018: 1-4.
[15] ZHOU X L, CHEN X J, CHEN S Y, et al. Weakly supervised learning-based object detection: a survey[J]. Computer Science, 2019, 46(11): 49-57.
周小龙, 陈小佳, 陈胜勇, 等. 弱监督学习下的目标检测算法综述[J]. 计算机科学, 2019, 46(11): 49-57.
[16] ZHANG S D, YANG M, HU T. Salient object detection algorithm based on multi-feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(5): 834-845.
张守东, 杨明, 胡太. 基于多特征融合的显著性目标检测算法[J]. 计算机科学与探索, 2019, 13(5): 834-845.
[17] SHI F F, ZHANG S L, PENG L. Deep convolution saliency detection combined with edge feature prior-based inspection[J]. Computer Engineering and Applications, 2020, 56(14): 199-206.
时斐斐, 张松龙, 彭力. 结合边缘特征先验引导的深度卷积显著性检测[J]. 计算机工程与应用, 2020, 56(14): 199-206.
[18] CHANG Z, DUAN X H, LU W C, et al. Multi-scale saliency detection based on Bayesian framework[J]. Computer Engineering and Applications, 2020, 56(11): 207-213.
常振, 段先华, 鲁文超, 等. 基于多尺度的贝叶斯模型显著性检测[J]. 计算机工程与应用, 2020, 56(11): 207-213.
[19] ZHANG Q, HUO Z, LIU Y, et al. Salient object detection employing a local tree-structured low-rank representation and foreground consistency[J]. Pattern Recognition, 2019, 92: 119-134.
[20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-14.
[21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Automation, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[22] LEE G, TAI Y W, KIM J, et al. Deep saliency with encoded low level distance map and high level features[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 660-668.
[23] DAI J F, LI Y, HE K, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec 5, 2016. Massachusetts: MIT Press, 2016: 379-387.
[24] ZHANG P, WANG D, LU H, et al. Amulet: aggregating multi-level convolutional features for salient object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 202-211.
[25] WANG T T, ZHANG L H, LU H C, et al. Kernelized subspace ranking for saliency detection[C]//LNCS 9912: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 450-466.
[26] LI G B, YU Y Z. Deep contrast learning for salient object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 478-487.
[27] HOU Q B, CHENG M M, HU X W, et al. Deeply supervised salient object detection with short connections[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 815-828.
[28] HOU Q B, LIU J J, CHENG M M, et al. Three birds one stone: a unified framework for salient object segmentation, edge detection and skeleton extraction[J]. arXiv:1803.09860, 2018.
[29] FENG M Y, LU H C, DING E, et al. Attentive feedback network for boundary-aware salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 1623-1632.
[30] QIN X B, ZHANG Z C, HUANG C Y, et al. BASNet: boundary-aware salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 7479-7489.
[31] WU Z, SU L, HUANG Q M, et al. Cascaded partial decoder for fast and accurate salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 3907-3916.
[32] LIU J J, HOU Q B, CHENG M M, et al. A simple pooling-based design for real-time salient object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3917-3926.
[33] LIU N, HAN J W, YANG M H, et al. PiCANet: learning pixel-wise contextual attention for saliency detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 3089-3098.
[34] CHEN S H, TAN X L, WANG B, et al. Reverse attention for salient object detection[C]//LNCS 11213: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 236-252.
[35] ZHANG L, DAI J, LU H C, et al. A bi-directional message passing model for salient object detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 1741-1750.
[36] WANG T T, BORJI A, ZHANG L H, et al. A stagewise refinement model for detecting salient objects in images[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 4039-4048.
[37] WANG W G, ZHAO S Y, SHEN J B, et al. Salient object detection with pyramid attention and salient edges[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 1448-1457.
[38] ZHAO T, WU X Q. Pyramid feature attention network for saliency detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 3085-3094.
[39] LIU N, HAN J W. DHSNet: deep hierarchical saliency network for salient object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 678-686.
[40] WANG T, ZHANG L, WANG S, et al. Detect globally, refine locally: a novel approach to saliency detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 3127-3135.
[41] LUO Z M, MISHRA A K, ACHKAR A, et al. Non-local deep features for salient object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6593-6601.
[42] ZHANG X N, WANG T T, QI J Q, et al. Progressive attention guided recurrent network for salient object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 714-722.
[43] LI G, YU Y. Visual saliency based on multiscale deep features[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-13, 2015. Washington: IEEE Computer Society, 2015: 5455-5463.
[44] LI X, YANG F, CHENG H, et al. Contour knowledge transfer for salient object detection[C]//LNCS 11219: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 370-385.
[45] ZHANG L, ZHANG J M, LIN Z, et al. CapSal: leveraging captioning to boost semantics for salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 6024-6033.
[46] WU R M, FENG M Y, GUAN W L, et al. A mutual learning method for salient object detection with intertwined multi-supervision[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 8150-8159.
[47] LIU T, YUAN Z J, SUN J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367.
[48] ACHANTA R, HEMAMI S S, ESTRADA F J, et al. Frequency-tuned salient region detection[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Washington: IEEE Computer Society, 2009: 1597-1604.
[49] MOVAHEDI V, ELDER J H. Design and perceptual validation of performance measures for salient object segmentation [C]//Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washington: IEEE Computer Society, 2010: 49-56.
[50] LI Y, HOU X D, KOCH C, et al. The secrets of salient object segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 280-287.
[51] WANG L J, LU H C, WANG Y F, et al. Learning to detect salient objects with image-level supervision[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 3796-3805.
[52] ALPERT S, GALUN M, BRANDT A, et al. Image segmentation by probabilistic bottom-up aggregation and cue integration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 315-327.
[53] SHI J, YAN Q, XU L, et al. Hierarchical image saliency detection on extended CSSD[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 717-729.
[54] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Washington: IEEE Computer Society, 2009: 248-255.
[55] XIAO J X, HAYS J, EHINGER K A, et al. SUN database: large-scale scene recognition from abbey to zoo[C]//Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washington: IEEE Computer Society, 2010: 3485-3492.
[56] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
[57] MARGOLIN R, ZELNIK-MANOR L, TAL A, et al. How to evaluate foreground maps[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 248-255.
[58] PERAZZI F, KR?HENBüHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection [C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 733-740. |