[1] MOONEY R J, ROY L. Content-based book recommending using learning for text categorization[C]//Proceedings of the 5th ACM Conference on Digital Libraries, San Antonio, Jun 2-7, 2000. New York: ACM, 2000: 195-204.
[2] GOLDBERG D, NICHOLS D, OKI B M, et al. Using colla-borative filtering to weave an information tapestry[J]. Com-munications of the ACM, 1992, 35(12): 61-70.
[3] SHANG S, DING R G, ZHENG K, et al. Personalized trajectory matching in spatial networks[J]. The VLDB Journal—The International Journal on Very Large Data Bases, 2014, 23(3): 449-468.
[4] YAP G E, LI X L, PHILIP S Y. Effective next-items recommendation via personalized sequential pattern mining[C]//LNCS 7239: Proceedings of the 17th International Conference on Database Systems for Advanced Applications, Apr 15-19, 2012. Berlin, Heidelberg: Springer, 2012: 48-64.
[5] HE R N, MCAULEY J. Fusing similarity models with Markov chains for sparse sequential recommendation[C]//Proceedings of the 16th International Conference on Data Mining, Barcelona, Dec 12-15, 2016. Washington: IEEE Computer Society, 2016: 191-200.
[6] WU C Y, AHMED A, BEYTEL A. Recurrent recommender networks[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge,Feb 6-10, 2017. New York: ACM, 2017: 495-503.
[7] HIDASI B, QUADRANA M, KARATZOGLOU A, et al. Parallel recurrent neural network architectures for feature-rich session-based recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems, Boston, Sep 15-19, 2016. New York: ACM, 2016: 241-248.
[8] ASWANI A V, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[9] RENDLE S, FREUDEN T C, SCHMIDT T L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web, Raleigh, Apr 26-30, 2010. New York:ACM, 2010: 811-820.
[10] HIDASI B, KARAT Z A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[J]. arXiv:1511.06939, 2015.
[11] CHEN X, XU H T, ZHANG Y F, et al. Sequential recom-mendation with user memory networks[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, Feb 5-9, 2018. New York:ACM, 2018: 108-116.
[12] YING H C, ZHUANG F Z, ZHANG F Z, et al. Sequential recommender system based on hierarchical attention networks[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3926-3932.
[13] LIU Q, ZENG Y F, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1831-1839.
[14] MA C, KANG P, LIU X. Hierarchical gating networks for sequential recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 825-833.
[15] KANG W C, MCAULEY J. Self-attentive sequential recom-mendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining, Singapore, Nov 17-20, 2018.Washington: IEEE Computer Society, 2018: 197-206.
[16] SUN F, LIU J, WU J, et al. BERT4Rec: sequential recom-mendation with bidirectional encoder representations from Transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management,Beijing, Nov 3-7, 2019. New York: ACM, 2019: 1441-1450.
[17] LI J C, WANG Y J, MCAULEY J J. Time interval aware self-attention for sequential recommendation[C]//Proceedings of the 13th ACM International Web Search and Data Mining, Houston, Feb 3-7, 2020. New York: ACM, 2020: 322-330.
[18] ZHANG T T, ZHAO P P, LIU Y, et al. Feature-level deeper self-attention network for sequential recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 4320- 4326.
[19] WU J B, CAI R Q, WANG H N. Déjà vu: a contextualized temporal attention mechanism for sequential recommendation[C]//Proceedings of the 2020 International World Wide Web Conference, Taipei, China, Apr 20-24, 2020. New York:ACM, 2020: 2199-2209.
[20] HONG L J, DAVISON B D. Empirical study of topic modeling in Twitter[C]//Proceedings of the 3rd Workshop on Social Network Mining and Analysis, Paris, Jun 28, 2009. New York: ACM, 2010: 80-88.
[21] WANG Z, LONG M, ZHANG Y. A hybrid document feature extraction method using latent Dirichlet allocation and Word2Vec[C]//Proceedings of the IEEE 1st International Conference on Data Science in Cyberspace, Changsha, Jun 13-16, 2016. Washington: IEEE Computer Society, 2016:98-103.
[22] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv: 1301.3781, 2013. |