[1] CHIN A, TIAN J, HAN J, et al. A study of offline events and its influence on online social connections in Douban[C]//Proceedings of the 9th IEEE International Conference on Green Computing and Communications, Beijing, Aug 20-23, 2013. Piscataway: IEEE, 2013: 1021-1028.
[2] RICKEN S, BARKHUUS L, JONES Q. Going online to meet offline: organizational practices of social activities through Meetup[C]//Proceedings of the 8th International Conference on Communities and Technologies, Troyes, Jun 26-30, 2017. New York: ACM, 2017: 139-148.
[3] LIU X, HE Q, TIAN Y, et al. Event-based social networks: linking the online and offline social worlds[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, Aug 12-16, 2012. New York: ACM, 2012: 1032-1040.
[4] STRATIGI M, NUMMENMAA J, PITOURA E, et al. Fair sequential group recommendations[C]//Proceedings of the 35th Annual ACM Symposium on Applied Computing, Brno, Mar 30-Apr 3, 2020. New York: ACM, 2020: 1443-1452.
[5] WANG W, ZHANG W, RAO J, et al. Group-aware long-and short-term graph representation learning for sequential group recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1449-1458.
[6] SCHEIN A, POPESCUL A, UNGAR L, et al. Methods and metrics for cold-start recommendations[C]//Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tam-pere, Aug 11-15, 2002. New York: ACM, 2002: 253-260.
[7] LIANG Y, HUANG C L, BAO X G. Sequential dynamic event recommendation in event-based social networks: an upper confidence bound approach[J]. Information Sciences, 2021(1): 1-23.
[8] DU Y, MENG X, ZHANG Y, et al. GERF: a group event recommendation framework based on learning-to-rank[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(4): 674-687.
[9] CUI Q, WU S, HUANG Y, et al. A hierarchical contextual attention-based network for sequential recommendation[J]. Neurocomputing, 2019, 358: 141-149.
[10] 张玉洁, 杜雨露, 孟祥武. 组推荐系统及其应用研究[J]. 计算机学报, 2016, 39(4): 745-764.
ZHANG Y J, DU Y L, MENG X W. Research on group recommender systems and their applications[J]. Chinese Journal of Computers, 2016, 39(4): 745-764.
[11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 6000-6010.
[12] CAO D, HE X, MIAO L, et al. Attentive group recomm-endation[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 645-654.
[13] HUANG Z, XU X, ZHU H, et al. An efficient group recom-mendation model with multiattention-based neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4461-4474.
[14] MIGLIORINI S, QUINTARELLI E, CARRA D, et al. Sequ-ences of recommendations for dynamic groups: what is the role of context?[C]//Proceedings of the 8th IEEE International Congress on Big Data, Milan, Jul 8-13, 2019. Piscataway: IEEE, 2019: 121-128.
[15] JEONG H J, KIM M H. HGGC: a hybrid group recomm-endation model considering group cohesion[J]. Expert Systems with Applications, 2019, 136: 73-82.
[16] WANG S, HU L, WANG Y, et al. Sequential recommender systems: challenges, progress and prospects[C]//Proceedings of the 28th International Joint Conference on Artificial Inte-lligence, Macao, China, Aug 10-16, 2019. San Francisco: Morgan Kaufmann, 2019: 6332-6338.
[17] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recom-mendation[C]//Proceedings of the 19th International Conf-erence on World Wide Web, Raleigh,Apr 26-30, 2010. New York: ACM, 2010: 811-820.
[18] TIM D, BENEDIKT L, JüRGEN Z. Sequential user-based recurrent neural network recommendations[C]//Proceedings of the 11th ACM Conference on Recommender Systems, Como, Aug 27-31, 2017. New York: ACM, 2017: 152-160.
[19] KANG W, MCAULEY J. Self-attentive sequential recom-mendation[C]//Proceedings of the 18th IEEE International Conference on Data Mining, Singapore, Nov 17-20, 2018. Washington: IEEE Computer Society, 2018: 197-206.
[20] SUN F, LIU J, WU J, et al. BERT4Rec: sequential recomm-endation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 1441-1450.
[21] ZHANG M, ZHOU Z. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837.
[22] ZHANG D, ZHAO S, DUAN Z, et al. A multi-label class-ification method using a hierarchical and transparent representation for paper-reviewer recommendation[J]. ACM Transactions on Information Systems, 2020, 38(1): 1-20.
[23] KATARYA R, GAUTAM D. Survey on opinion leader in social network using data mining[C]//Proceedings of the 5th International Conference on Advanced Computing & Communication Systems, Coimbatore, Mar 15-16, 2019. Pisc-ataway: IEEE, 2019: 506-509.
[24] 许晓明, 梅红岩, 于恒, 等. 基于偏好融合的群组推荐方法研究综述[J]. 小型微型计算机系统, 2020, 41(12): 2500-2508.
XU X M, MEI H Y, YU H, et al. Review of group recom-mendation methods based on preference fusion[J]. Journal of Chinese Computer Systems, 2020, 41(12): 2500-2508.
[25] TRINH T, WU D, WANG R, et al. An effective content-based event recommendation model[J]. Multimedia Tools and Applications, 2021, 80(11): 16599-16618.
[26] FENG S, LI X, ZENG Y, et al. Personalized ranking metric embedding for next new POI recommendation[C]//Proce-edings of the 24th International Joint Conferences on Arti-ficial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 2069-2075.
[27] SEO Y, KIM Y, LEE E, et al. An enhanced aggregation method considering deviations for a group recommendation[J]. Expert Systems with Applications, 2018, 93: 299-312.
[28] WANG Y, TANG J. Event2Vec: learning event representations using spatial-temporal information for recommendation[C]//LNCS 11441: Proceedings of the 23rd Pacific-Asia Confe-rence on Knowledge Discovery and Data Mining, Macau, China, Apr 14-17, 2019. Cham: Springer, 2019: 314-326.
廖国琼(1969—),男,湖北黄石人,教授,博士生导师,CCF高级会员,主要研究方向为数据库、数据挖掘、推荐系统。
LIAO Guoqiong, born in 1969, professor, Ph.D. supervisor, senior member of CCF. His research interests include databases, data mining and recommendation systems.
杨乐川(1996—),男,江西南昌人,硕士研究生,主要研究方向为推荐系统。
YANG Lechuan, born in 1996, M.S. candidate. His research interest is recommendation systems. |