[1] |
SANG E T K, DE MEULDER F. Introduction to the CoNLL-2003 shared task: language-independent named entity reco-gnition[C]// Proceedings of the 7th Conference on Natural Language Learning, Edmonton, May 31-Jun 1, 2003. Strou-dsburg: ACL, 2003: 142-147.
|
[2] |
KUMAR S. A survey of deep learning methods for relation extraction[J]. arXiv:1705.03645, 2017.
|
[3] |
DODDINGTON G R, MITCHELL A, PRZYBOCKI M A, et al. The automatic content extraction (ACE) program-tasks, data, and evaluation[C]// Proceedings of the 4th International Conference on Language Resources and Evaluation, Lisbon, May 26-28, 2004: 1-4.
|
[4] |
KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Asso-ciation for Computational Linguistics, Baltimore, Jun 22-27, 2014. Stroudsburg: ACL, 2014: 655-665.
|
[5] |
ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[J]. arXiv:1409.2329, 2014.
|
[6] |
HUANG Z, XU W, YU K. Bidirectional LSTM-CRF mo-dels for sequence tagging[J]. arXiv:1508.01991, 2015.
|
[7] |
STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]// Proceedings of the 2017 Conference on Empirical Met-hods in Natural Language Processing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 2670-2680.
|
[8] |
PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Langu-age Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg:ACL, 2018: 2227-2237.
|
[9] |
RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB/OL]. [2020-05-24]. https://s3-us-west-2.amazon-aws.com/openai-assets/researchcovers/languageunsupervised/ language understanding paper.pdf.
|
[10] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-putational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186.
|
[11] |
郭喜跃, 何婷婷, 胡小华, 等. 基于句法语义特征的中文实体关系抽取[J]. 中文信息学报, 2014, 28(6):183-189.
|
|
GUO X Y, HE T T, HU X H, et al. Chinese entity relationship extraction based on syntactic and semantic features[J]. Journal of Chinese Information Processing, 2014, 28(6):183-189.
|
[12] |
ZENG D, LIU K, CHEN Y, et al. Distant supervision for relation extraction via piecewise convolutional neural net-works[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 1753-1762.
|
[13] |
KATIYAR A, CARDIE C. Going out on a limb: joint extraction of entity mentions and relations without depen-dency trees[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 917-928.
|
[14] |
DIB F, LINDBERG S, NUGUES P. Extraction of career profiles from Wikipedia[C]// Proceedings of the 1st Con-ference on Biographical Data in a Digital World 2015, Amsterdam, Apr 9, 2015: 33-38.
|
[15] |
PLUM A, ZAMPIERI M, ORASAN C, et al. Large-scale data harvesting for biographical data[J]//Proceedings of the 3rd Conference on Biographical Data in a Digital World, Varna, 2019: 1-12.
|
[16] |
YANG H, CHEN Y B, LIU K, et al. DCFEE: a document-level Chinese financial event extraction system based on automatically labeled training data[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 50-55.
|
[17] |
LI D Y, HUANG L F, JI H, et al. Biomedical event extraction based on knowledge-driven tree-LSTM[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 1421-1430.
|
[18] |
ZHANG T T, JI H, SIL A. Joint entity and event extraction with generative adversarial imitation learning[J]. Data Intelligence, 2019, 1(2):99-120.
DOI
URL
|
[19] |
ZENG Y, FENG Y S, MA R, et al. Scale up event extraction learning via automatic training data generation[C]// Pro-ceedings of the 32nd AAAI Conference on Artificial Int-elligence, the 30th Innovative Applications of Artificial Int-elligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 6045-6052.
|
[20] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
|