[1] 官申珂, 林晓, 郑晓妹, 等. 结合超像素分割的多尺度特征融合图像语义分割算法[J]. 图学学报, 2021, 42(3): 406-413.
GUAN S K, LIN X, ZHENG X M, et al. A semantic seg- mentation algorithm using multi-scale feature fusion with combination of superpixel segmentation[J]. Journal of Gra-phics, 2021, 42(3): 406-413.
[2] MONASTERIO-EXPOSITO L, PIZARRO D, MACIAS-GUARASA J. Label augmentation to improve generalization of deep learning semantic segmentation of laparoscopic images[J]. IEEE Access, 2022, 10: 37345-37359.
[3] 熊风光, 张鑫, 韩燮, 等. 改进的遥感图像语义分割研究[J].计算机工程与应用, 2022, 58(8): 185-190.
XIONG F G, ZHANG X, HAN X, et al. Rsearch on im-proved semantic segmentation of remote sensing[J]. Com-puter Engineering and Applications, 2022, 58(8): 185-190.
[4] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 3431-3440.
[5] YANG Q, KU T, HU K. Efficient attention pyramid network for semantic segmentation[J]. IEEE Access, 2021, 9: 18867-18875.
[6] MEHTA S, RASTEGARI M, CASPI A, et al. ESPNet: effi-cient spatial pyramid of dilated convolutions for semantic segmentation[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 552-568.
[7] WANG Y, ZHOU Q, LIU J, et al. LEDNet: a lightweight encoder-decoder network for real-time semantic segmenta-tion[C]//Proceedings of the 2019 IEEE International Con-ference on Image Processing, Taipei, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 1860-1864.
[8] 张汉, 张德祥, 陈鹏, 等. 并行注意力机制在图像语义分割中的应用[J]. 计算机工程与应用, 2022, 58(9): 151-160.
ZHANG H, ZHANG D X, CHEN P, et al. Application of parallel attention mechanism in image semantic segmenta-tion[J]. Computer Engineering and Applications, 2022, 58(9): 151-160.
[9] ZHANG K, LIAO Q, ZHANG J, et al. EFRNet: a light-weight network with efficient feature fusion and refinement for real-time semantic segmentation[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo, Shenzhen, Jul 5-9, 2021. Piscataway: IEEE, 2021: 1-6.
[10] YI S, LI J, LIU X, et al. CCAFFMNet: dual-spectral se-mantic segmentation network with channel-coordinate atten-tion feature fusion module[J]. Neurocomputing, 2022, 482: 236-251.
[11] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Con-ference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 3146-3154.
[12] WU T, TANG S, ZHANG R, et al. CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 2020, 30: 1169-1179.
[13] CHENG B, CHEN L C, WEI Y, et al. SPGNet: semantic prediction guidance for scene parsing[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 5218-5228.
[14] ZHAO H, ZHANG Y, LIU S, et al. PSANet: point-wise spa-tial attention network for scene parsing[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 267-283.
[15] GAO S, ZHANG C, WANG Z, et al. SPMNet: a light-weighted network with separable pyramid module for real-time semantic segmentation[J]. Journal of Experimental & Theoretical Ar-tificial Intelligence, 2022, 34(4): 651-662.
[16] SHAN T, YAN J. SCA-Net: a spatial and channel attention network for medical image segmentation[J]. IEEE Access, 2021, 9: 160926-160937.
[17] PENG C, TIAN T, CHEN C, et al. Bilateral attention decoder: a lightweight decoder for real-time semantic segmentation[J]. Neural Networks, 2021, 137: 188-199.
[18] ZHANG H, DANA K, SHI J, et al. Context encoding for semantic segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 7151-7160.
[19] SUN Q, ZHANG Z, LI P. Second-order encoding networks for semantic segmentation[J]. Neurocomputing, 2021, 445: 50-60.
[20] LOU A, LOEW M. CFPNet: channel-wise feature pyramid for real-time semantic segmentation[C]//Proceedings of the 2021 IEEE International Conference on Image Processing, Anchorage, Sep 19-22, 2021. Piscataway: IEEE, 2021: 1894-1898.
[21] YUAN Y, HUANG L, GUO J, et al. OCNet: object context for semantic segmentation[J]. International Journal of Com-puter Vision, 2021, 129(8): 2375-2398.
[22] YANG M, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recogni-tion, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 3684-3692.
[23] LIU J, XU X, SHI Y, et al. RELAXNet: residual efficient learning and attention expected fusion network for real-time semantic segmentation[J]. Neurocomputing, 2022, 474: 115-127.
[24] SANG H, ZHOU Q, ZHAO Y. PCANet: pyramid convolu-tional attention network for semantic segmentation[J]. Image and Vision Computing, 2020, 103: 103997.
[25] EVERINGHAM M, ESLAMI S M, VAN GOOL L, et al. The PASCAL visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136.
[26] CORDTS M, OMRAN M, RAMOS S, et al. The Cityscapes dataset for semantic urban scene understanding[C]//Procee-dings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Wa-shington: IEEE Computer Society, 2016: 3213-3223.
[27] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[28] YU C, WANG J, PENG C, et al. BiSeNet: bilateral segmen-tation network for real-time semantic segmentation[C]//Pro-ceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 325-341.
[29] ROBBINS H, MONRO S. A stochastic approximation method[J]. Annals of Mathematical Statistics, 1951, 22(3): 400-407.
[30] ZHAO H, QI X, SHEN X, et al. ICNet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 405-420.
[31] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2881-2890.
[32] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017. |