计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (1): 75-92.DOI: 10.3778/j.issn.1673-9418.2303119
陈先意,王康,丁思哲,付章杰
出版日期:
2024-01-01
发布日期:
2024-01-01
CHEN Xianyi, WANG Kang, DING Sizhe, FU Zhangjie
Online:
2024-01-01
Published:
2024-01-01
摘要: 区块链技术因其去中心化、高透明度等优良特性引领了新一代数据存储技术的发展,近年来广泛应用于社会治理、金融保险、数字版权等领域。然而,作为一个基于规范和协议的自封闭系统,区块链不同链间无法直接实现数据通信,难以满足跨领域应用的数据共享需求,区块链互操作性技术应运而生。目前,该技术的项目实例分析较少。基于区块链互操作性最新研究成果,系统性总结了近年来互操作技术的代表性方案,并归纳展望了发展前景。首先,按照通信各链的结构差异,将区块链互操作方法划分成同构扩容和异构互操作两种类型;其次,按照技术发展脉络和区块链分层架构,分别介绍两种类型的代表性方法,分析比较了各方法的实现原理和技术细节,归纳总结它们的优缺点;再次,介绍了目前已经实施的区块链互操作性项目研发进展,重点介绍其实现思路、运营模式和现状,并在吞吐量、安全性等多个指标上对比分析其性能;最后,展望了区块链互操作性技术各方向的发展趋势。
陈先意, 王康, 丁思哲, 付章杰. 区块链互操作性技术研究进展[J]. 计算机科学与探索, 2024, 18(1): 75-92.
CHEN Xianyi, WANG Kang, DING Sizhe, FU Zhangjie. Survey on Progress of Blockchain Interoperability Technology[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 75-92.
[1] BUTERIN V. Chain interoperability[R/OL]. (2016-09-09)[2023-02-21]. https://r3.com/reports/chain-interoperability/. [2] HARDJONO T, LIPTON A, PENTLAND A. Towards a design philosophy for interoperable blockchain systems[J]. arXiv:1805.05934, 2018. [3] LOHACHAB A, GARG S, KANG B, et al. Towards inter-connected blockchains: a comprehensive review of the role of interoperability among disparate blockchains[J]. ACM Computing Surveys, 2021, 54(7): 1-39. [4] MONIKA, BHATIA R. Interoperability solutions for block-chain[C]//Proceedings of the 2020 International Conference on Smart Technologies in Computing, Electrical and Elec-tronics, Bengaluru, Oct 9-10, 2020. Piscataway: IEEE, 2020: 381-385. [5] 李芳, 李卓然, 赵赫. 区块链跨链技术进展研究[J]. 软件学报, 2019, 30(6): 1649-1660. LI F, LI Z R, ZHAO H. Research on the progress in cross-chain technology of blockchains[J]. Journal of Software, 2019, 30(6): 1649-1660. [6] 路爱同, 赵阔, 杨晶莹, 等. 区块链跨链技术研究[J]. 信息网络安全, 2019, 19(8): 83-90. LU A T, ZHAO K, YANG J Y, et al. Research on cross-chain technology of blockchain[J]. Netinfo Security, 2019, 19(8): 83-90. [7] 郭朝, 郭帅印, 张胜利, 等. 区块链跨链技术分析[J]. 物联网学报, 2020, 4(2): 35-48. GUO Z, GUO S Y, ZHANG S L, et al. Analysis of cross-chain technology of blockchain[J]. Chinese Journal on Internet of Things, 2020, 4(2): 35-48. [8] 李洋, 门进宝, 余晗, 等. 区块链扩容技术研究综述[J]. 电力信息与通信技术, 2020, 18(6): 1-9. LI Y, MEN J B, YU H, et al. Overview of blockchain capacity expansion technology[J]. Electric Power Information and Communication Technology, 2020, 18(6): 1-9. [9] 徐卓嫣, 周轩. 跨链技术发展综述[J]. 计算机应用研究, 2021, 38(2): 341-346. XU Z Y, ZHOU X. Survey on crosschain technology[J]. App-lication Research of Computers, 2021, 38(2): 341-346. [10] 何帅, 黄襄念, 陈晓亮. 区块链跨链技术发展及应用研究综述[J]. 西华大学学报(自然科学版), 2021, 40(3): 1-14. HE S, HUANG X N, CHEN X L. The research summary of the development and application of blockchain cross-chain technology[J]. Journal of Xihua University (Natural Science Edition), 2021, 40(3): 1-14. [11] NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[J]. Decentralized Business Review, 2008: 21260. [12] BUTERIN V. Ethereum: a next-generation smart contract and decentralized application platform[R/OL]. (2013-11-27)[2023-02-21]. https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf. [13] MCFARLANE C, BEER M, BROWN J, et al. Patientory: a healthcare peer-to-peer EMR storage network v1.1[R/OL]. [2023-02-21]. https://patientoryassociation.org/wp-content/uploads/2018/11/patientory_whitepaper.pdf. [14] Shipchain SA (Pty) Ltd. Shipchain whitepaper[R/OL]. (2018-07-31) [2023-02-21]. https://whitepaper.io/coin/shipchain. [15] SPECTER M A, KOPPEL J, WEITZNER D. The ballot is busted before the blockchain: a security analysis of voatz, the first internet voting application used in US federal elections[C]//Proceedings of the 29th USENIX Conference on Security Symposium, Boston, Aug 12-14, 2020: 1535-1552. [16] VO H T, WANG Z, KARUNAMOORTHY D, et al. Internet of blockchains: techniques and challenges ahead[C]//Pro-ceedings of the 2018 IEEE International Conference on In-ternet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data, Halifax, Jul 30-Aug 3, 2018. Piscataway: IEEE, 2018: 1574-1581. [17] XAGE SECURITY, INC. Zero trust access management for industrial enterprises and operations[R/OL]. (2022-09-26) [2023-02-21]. https://info.xage.com/zero-trust-access-mana-gement. [18] 白波. 布局建设一批重大科技联动创新基地[N]. 北京日报, 2022-09-10(8). BAI B. Layout and construction of a number of major science and technology linked innovation bases[N]. Beijing Daily, 2022-09-10(8). [19] 最高人民法院. 《最高人民法院关于加强区块链司法应用的意见》全文(中英文版)[EB/OL]. (2022-05-25) [2023-02-21]. https://www.court.gov.cn/zixun-xiangqing-360271.html. The Supreme People?s Court of The People?s Republic of China. Opinions of the Supreme People’s Court on streng-thening blockchain application in the judicial field[EB/OL]. (2022-05-25) [2023-02-21]. https://www.court.gov.cn/zixun-xiangqing-360271.html. [20] LAFOURCADE P, LOMBARD-PLATET M. About block-chain interoperability[J]. Information Processing Letters, 2020, 161: 105976. [21] 董宁, 朱轩彤. 区块链技术演进及产业应用展望[J]. 信息安全研究, 2017, 3(3): 200-210. DONG N, ZHU X T. Blockchain technology and its prospect of industrial application[J]. Journal of Information Security Research, 2017, 3(3): 200-210. [22] BACK A, CORALLO M, DASHJR L, et al. Enabling block-chain innovations with pegged sidechains[EB/OL]. [2023-02-21]. http://www.opensciencereview.com/papers/123/enabling blockchain-innovations-with-pegged-sidechains. [23] KIAYIAS A, ZINDROS D. Proof-of-work sidechains[C]//LNCS 11598: Proceedings of the FC 2019 International Workshops on Financial Cryptography and Data Security, Feb 18-22, 2019. Cham: Springer, 2019: 21-34. [24] GA?I P, KIAYIAS A, ZINDROS D. Proof-of-stake side-chains[C]//Proceedings of the 2019 IEEE Symposium on Security and Privacy, San Francisco, May 20-22, 2019. Pis-cataway: IEEE, 2019: 139-156. [25] DILLEY J, POELSTRA A, WILKINS J, et al. Strong fede-rations: an interoperable blockchain solution to centralized third-party risks[J]. arXiv:1612.05491, 2016. [26] LI M, TANG H, HUSSEIN A R, et al. A sidechain-based decentralized authentication scheme via optimized two-way peg protocol for smart community[J]. IEEE Open Journal of the Communications Society, 2020, 1: 282-292. [27] GAI F, NIU J, TABATABAEE S A, et al. Cumulus: a secure BFT-based sidechain for off-chain scaling[C]//Proceedings of the 2021 IEEE/ACM 29th International Symposium on Quality of Service, Tokyo, Jun 25-28, 2021. Piscataway: IEEE, 2021: 1-6. [28] YIN L, XU J, TANG Q. Sidechains with fast cross-chain transfers[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 19(6): 3925-3940. [29] PALAI A, VORA M, SHAH A. Empowering light nodes in blockchains with block summarization[C]//Proceedings of the 2018 9th IFIP International Conference on New Tech-nologies, Mobility and Security, Paris, Feb 26-28, 2018. Pis-cataway: IEEE, 2018: 1-5. [30] SIGWART M, FRAUENTHALER P, SPANRING C, et al. Preparing simplified payment verifications for cross-block-chain token transfers[R/OL]. [2023-02-21]. https://dsg.tuwien.ac.at/projects/tast. [31] GAROFFOLO A, KAIDALOV D, OLIYNYKOV R. Zendoo: a zk-SNARK verifiable cross-chain transfer protocol enabling decoupled and decentralized sidechains[C]//Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems, Singapore, Nov 29-Dec 1, 2020. Pis-cataway: IEEE, 2020: 1257-1262. [32] Sergio Demian Lerner, Rsk Labs Ltd. Drivechains, sidechains and hybrid 2-way peg designs[R/OL]. (2016-01-04)[2023-02-21]. https://docs.rsk.co/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf. [33] DENG L, CHEN H, ZENG J, et al. Research on cross-chain technology based on sidechain and hash-locking[C]//LNCS 10973: Proceedings of the 2018 International Conference on Edge Computing, Seattle, Jun 25-30, 2018. Cham: Springer, 2018: 144-151. [34] POON J, DRYJA T. The bitcoin lightning network: scalable off-chain instant payments[R/OL]. (2016-01-14)[2023-02-21]. https://lightning.network/lightning-network-paper.pdf. [35] HERLIHY M. Atomic cross-chain swaps[C]//Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, Egham, Jul 23-27, 2018. New York: ACM, 2018: 245-254. [36] KHAN N, STATE R. Lightning network: a comparative review of transaction fees and data analysis[C]//ALSC 1010: Pro-ceedings of the 2019 International Congress on Blockchain and Applications, ávila, Jun 26-28, 2019. Cham: Springer, 2019: 11-18. [37] PM47. A scala implementation of the lightning network[EB/OL]. (2022-12-01) [2023-02-21]. https://github.com/ACINQ/ eclair. [38] Guggero. Lightning network daemon[EB/OL]. (2022-12-02) [2023-02-21]. https://github.com/ACINQ/eclair. [39] PAPADIS N, TASSIULAS L. Blockchain-based payment channel networks: challenges and recent advances[J]. IEEE Access, 2020, 8: 227596-227609. [40] XU Z, CHEN L. L2chain: towards high-performance, confi-dential and secure layer-2 blockchain solution for decen-tralized applications[J]. Proceedings of the VLDB Endow-ment, 2022, 16(4): 986-999. [41] DINH T T A, DATTA A, OOI B C. A blueprint for interope-rable blockchains[J]. arXiv:1910.00985, 2019. [42] PILLAI B, BISWAS K, MUTHUKKUMARASAMY V. Cross-chain interoperability among blockchain-based systems using transactions[J]. The Knowledge Engineering Review, 2020, 35: e23. [43] NISSL M, SALLINGER E, SCHULTE S, et al. Towards cross-blockchain smart contracts[C]//Proceedings of the 2021 IEEE International Conference on Decentralized App-lications and Infrastructures, United Kingdom, Aug 3-6, 2021. Piscataway: IEEE, 2021: 85-94. [44] LIN S, KONG Y, NIE S. Overview of block chain cross chain technology[C]//Proceedings of the 2021 13th Interna-tional Conference on Measuring Technology and Mechatro-nics Automation, Beihai, Jan 16-17, 2021. Piscataway: IEEE, 2021: 357-360. [45] XIONG A, LIU G, ZHU Q, et al. A notary group-based cross-chain mechanism[J]. Digital Communications and Networks, 2022, 8(6): 1059-1067. [46] LI H, WANG B. PRETRUST: a framework for fast pay-ments in blockchain systems[C]//Proceedings of the 2022 IEEE 8th International Conference on Computer and Com-munications. Piscataway: IEEE, 2022: 1329-1338. [47] DAI B, JIANG S, ZHU M, et al. Research and implemen-tation of cross-chain transaction model based on improved hash-locking[C]//CCIS 1267: Proceedings of the 2nd Inter-national Conference on Blockchain and Trustworthy Sys-tems, Dali, Aug 6-7, 2020. Singapore: Springer, 2020: 218-230. [48] SUN Y, YI L, DUAN L, et al. A decentralized cross-chain service protocol based on notary schemes and hash-locking[C]//Proceedings of the 2022 IEEE International Conference on Services Computing, Barcelona, Jul 10-16, 2022. Pisca-taway: IEEE, 2022: 152-157. [49] CAO L, ZHAO S, GAO Z S, et al. Cross-chain data tracea-bility mechanism for cross-domain access[J]. The Journal of Supercomputing, 2023, 79(5): 4944-4961. [50] HEJAZI-SEPEHR S, KITSIS R, SHARIF A. Transwarp conduit: interoperable blockchain application framework[J]. arXiv:1906.03256, 2019. [51] SPOKE M, Nuco Engineering Team. Aion: enabling the decen-tralized Internet[R/OL]. (2017-07-31) [2023-02-21]. https://crebaco.com/planner/admin/uploads/whitepapers/8880473AIONWhite-paper.pdf. [52] Blockgeeks. Most comprehensive AION blockchain guide[R/OL]. [2023-02-21]. https://blockgeeks.com/guides/aion-blockchain. [53] WU J, CUI X, HU W, et al. A new sustainable interchain design on transport layer for blockchain[C]//LNCS 11373: Proceedings of the 2018 International Conference on Smart Blockchain, Tokyo, Dec 10-12, 2018. Cham: Springer, 2018: 12-21. [54] ConsenSys. BTC Relay’s documentation[R/OL]. (2019-09-25) [2023-02-21]. http://btcrelay.org. [55] LI W, SFORZIN A, FEDOROV S, et al. Towards scalable and private industrial blockchains[C]//Proceedings of the 2017 ACM Workshop on Blockchain, Cryptocurrencies and Contracts, Abu Dhabi, Apr 2-6, 2017. New York: ACM, 2017: 9-14. [56] ANDROULAKI E, BARGER A, BORTNIKOV V, et al. Hyperledger fabric: a distributed operating system for per-missioned blockchains[C]//Proceedings of the 13th Euro-Sys Conference, Porto, Apr 23-26, 2018. New York: ACM, 2018: 1-15. [57] 张朝栋, 王宝生, 邓文平. 基于侧链技术的供应链溯源系统设计[J]. 计算机工程, 2019, 45(11): 1-8. ZHANG C D, WANG B S, DENG W P. Design of supply chain traceability system based on side chain technology[J]. Computer Engineering, 2019, 45(11): 1-8. [58] 夏肇元, 程文美, 刘菲, 等. 基于区块链跨链的供应链信息共享方法[J]. 数字技术与应用, 2021, 39(12): 189-191. XIA Z Y, CHENG W M, LIU F, et al. Supply chain infor-mation sharing method based on blockchain cross-chain[J]. Digital Technology & Application, 2021, 39(12): 189-191. [59] MILLER A, BENTOV I, KUMARESAN R, et al. Sprites: payment channels that go faster than lightning[J]. arXiv:1702.05812v1, 2017. [60] POON J, BUTERIN V. Plasma: scalable autonomous smart contracts[R/OL]. (2017-08-11) [2023-02-21]. https://plasma.io/plasma.pdf. [61] TSABARY I, YECHIELI M, MANUSKIN A, et al. MAD-HTLC: because HTLC is crazy-cheap to attack[C]//Procee-dings of the 2021 IEEE Symposium on Security and Pri-vacy, San Francisco, May 24-27, 2021. Piscataway: IEEE, 2021: 1230-1248. [62] MALAVOLTA G, MORENO-SANCHEZ P, SCHNEIDEW-IND C, et al. Privacy-preserving multi-hop locks for block-chain scalability and interoperability[C]//Proceedings of the 26th Annual Network and Distributed System Security Symposium, San Diego, Feb 24-27, 2019. [63] 魏昂. 一种改进的区块链跨链技术[J]. 网络空间安全, 2019, 10(6): 40-45. WEI A. An improved cross-chain technology of block-chain[J]. Cyberspace Security, 2019, 10(6): 40-45. [64] AGUILERA M K, MERCHANT A, SHAH M, et al. Sin-fonia: a new paradigm for building scalable distributed systems[J]. ACM SIGOPS Operating Systems Review, 2007, 41(6): 159-174. [65] THOMAS S, SCHWARTZ E. A protocol for interledger pay-ments[R/OL]. [2023-02-21]. https://interledger.org/interle-dger.pdf. [66] SCHEID E J, HEGNAUER T, RODRIGUES B, et al. Bifr?st: a modular blockchain interoperability API[C]//Proceedings of the 2019 IEEE 44th Conference on Local Computer Networks, Osnabrueck, Oct 14-17, 2019. Piscataway: IEEE, 2019: 332-339. [67] KWON J, BUCHMAN E. Cosmos: a network of distribu-ted ledgers[R/OL]. [2023-02-21]. https://cosmos.network/whitepaper. [68] WOOD G. Polkadot: vision for a heterogeneous multi-chain framework[R/OL]. (2016-11-10)[2023-02-21]. https://assets.polkadot.network/Polkadot-whitepaper.pdf. [69] LIU Z, XIANG Y, SHI J, et al. Hyperservice: interoperability and programmability across heterogeneous blockchains[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, Nov 11-15, 2019. New York: ACM, 2019: 549-566. [70] GREENSPAN G. Multichain private blockchain-white paper[R/OL]. [2023-02-21]. http://www.multichain.com/download/MultiChain-White-Paper.pdf. [71] ZAMYATIN A, HARZ D, LIND J, et al. Xclaim: trustless, interoperable, cryptocurrency-backed assets[C]//Proceedings of the 2019 IEEE Symposium on Security and Privacy, San Francisco, May 19-23, 2019. Piscataway: IEEE, 2019: 193-210. [72] WeBankBlockchain. WeCross technical whitepaper[R/OL]. (2020-05-12) [2023-02-21]. https://github.com/WeBankBlockchain/WeCross. [73] 汪小益, 李瑞阳. BitXHub白皮书V2.0 区块链跨链技术平台[R/OL]. [2023-02-21]. https://upload.hyperchain.cn/BitXHub WhitePaper.pdf. WANG X Y, LI R Y. BitXHub whitepaper V2.0[R/OL]. [2023-02-21]. https://upload.hyperchain.cn/BitXHub White-Paper.pdf. [74] LU J, YANG B. Wanchain: building super financial markets for the new digital economy. Whitepaper version 0.9.1[R/OL]. [2023-02-21]. https://www.wanchain.org/_files/ugd/9296c5_0d623032c67b4e2380e14452ec02a9e4.pdf. [75] WANG H, CEN Y, LI X. Blockchain router: a cross-chain communication protocol[C]//Proceedings of the 6th Inter-national Conference on Informatics, Environment, Energy and Applications, Jeju, Mar 29-31, 2017. New York: ACM, 2017: 94-97. [76] ABDULLAH S, ARSHAD J, ALSADI M. Chain-Net: an internet-inspired framework for interoperable blockchains[J]. Distributed Ledger Technologies: Research and Prac-tice, 2022, 1(2): 1-20. [77] HARDJONO T, LIPTON A, PENTLAND A. Toward an interoperability architecture for blockchain autonomous sys-tems[J]. IEEE Transactions on Engineering Management, 2019, 67(4): 1298-1309. [78] 钱鹏, 刘振广, 何钦铭, 等. 智能合约安全漏洞检测技术研究综述[J]. 软件学报, 2022, 33(8): 3059-3085. QIAN P, LIU Z G, HE Q M, et al. Smart contract vulnera-bility detection technique: a survey[J]. Journal of Software, 2022, 33(8): 3059-3085. [79] 李雷孝, 郑岳, 高昊昱, 等. 智能合约漏洞检测研究综述[J]. 计算机科学与探索, 2022, 16(11): 2456-2470. LI L X, ZHENG Y, GAO H Y, et al. Survey of research on smart contract vulnerability detection[J]. Journal of Fron-tiers of Computer Science and Technology, 2022, 16(11): 2456-2470. [80] WANG W, SONG J, XU G, et al. Contractward: automated vulnerability detection models for ethereum smart contracts[J]. IEEE Transactions on Network Science and Enginee-ring, 2020, 8(2): 1133-1144. |
[1] | 张文韬, 黄建华, 顾彬, 宁宇豪, 宫在为. DAGGraph: 适合移动自组网的区块链[J]. 计算机科学与探索, 2024, 18(1): 252-264. |
[2] | 王心, 王雅生, 张书华, 王新宇, 徐帅. 区块链技术下绿色供应链减排策略与智能合约[J]. 计算机科学与探索, 2024, 18(1): 265-278. |
[3] | 霍炜, 张琼露, 欧嵬, 韩文报. 面向区块链的物联网终端跨域认证方法综述[J]. 计算机科学与探索, 2023, 17(9): 1995-2014. |
[4] | 田海博, 叶婉. 跨链数字资产风险管理策略及分析[J]. 计算机科学与探索, 2023, 17(9): 2219-2228. |
[5] | 王群, 李馥娟, 倪雪莉, 夏玲玲, 梁广俊, 马卓. 区块链互操作性及跨链技术研究[J]. 计算机科学与探索, 2023, 17(8): 1749-1775. |
[6] | 刘强, 宋宝燕, 纪婉婷, 王俊陆. 区块链多矿池恶意攻击模型研究[J]. 计算机科学与探索, 2023, 17(7): 1719-1728. |
[7] | 张立, 段明达, 万剑雄, 李雷孝, 刘楚仪. 车联网区块链吞吐量优化的深度强化学习方法研究[J]. 计算机科学与探索, 2023, 17(7): 1708-1718. |
[8] | 庞俊, 刘晨, 郝琨, 于明鹤, 信俊昌, 姜承扬. 基于时序索引的可编辑区块链模型研究[J]. 计算机科学与探索, 2023, 17(5): 1180-1188. |
[9] | 李昕航, 李超, 张桂刚, 邢春晓. 区块链与数据库技术融合综述[J]. 计算机科学与探索, 2023, 17(4): 761-770. |
[10] | 刘同来, 章子凯, 武继刚. 面向医疗图像协同分析的系统模型及访问控制[J]. 计算机科学与探索, 2022, 16(8): 1779-1791. |
[11] | 王群, 李馥娟, 倪雪莉, 夏玲玲, 王振力, 梁广俊. 区块链共识算法及应用研究[J]. 计算机科学与探索, 2022, 16(6): 1214-1242. |
[12] | 熊啸, 李雷孝, 高静, 高昊昱, 杜金泽, 郑岳, 牛铁铭. 区块链在车联网数据共享领域的研究进展[J]. 计算机科学与探索, 2022, 16(5): 1008-1024. |
[13] | 韩刚, 吕英泽, 罗维, 王嘉乾. 重大疫情患者隐私数据保护方案研究[J]. 计算机科学与探索, 2022, 16(2): 359-371. |
[14] | 李雷孝, 郑岳, 高昊昱, 熊啸, 牛铁铭, 杜金泽, 高静. 智能合约漏洞检测研究综述[J]. 计算机科学与探索, 2022, 16(11): 2456-2470. |
[15] | 孟博, 王乙丙, 赵璨, 王德军, 麻斌豪. 区块链跨链协议综述[J]. 计算机科学与探索, 2022, 16(10): 2177-2192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||